216 research outputs found

    A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks

    Full text link
    This is the peer reviewed version of the following article: Moravejosharieh, Amirhossein, Lloret, Jaime. (2016). A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks.International Journal of Communication Systems, 29, 7, 1269-1292. DOI: 10.1002/dac.3098, which has been published in final form at http://doi.org/10.1002/dac.3098. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving[EN] Wireless body sensor networks are offered to meet the requirements of a diverse set of applications such as health-related and well-being applications. For instance, they are deployed to measure, fetch and collect human body vital signs. Such information could be further used for diagnosis and monitoring of medical conditions. IEEE 802.15.4 is arguably considered as a well-designed standard protocol to address the need for low-rate, low-power and low-cost wireless body sensor networks. Apart from the vast deployment of this technology, there are still some challenges and issues related to the performance of the medium access control (MAC) protocol of this standard that are required to be addressed. This paper comprises two main parts. In the first part, the survey has provided a thorough assessment of IEEE 802.15.4 MAC protocol performance where its functionality is evaluated considering a range of effective system parameters, that is, some of the MAC and application parameters and the impact of mutual interference. The second part of this paper is about conducting a simulation study to determine the influence of varying values of the system parameters on IEEE 802.15.4 performance gains. More specifically, we explore the dependability level of IEEE 802.5.4 performance gains on a candidate set of system parameters. Finally, this paper highlights the tangible needs to conduct more investigations on particular aspect(s) of IEEE 802.15.4 MAC protocol. Copyright (c) 2015 John Wiley & Sons, Ltd.Moravejosharieh, A.; Lloret, J. (2016). A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks. International Journal of Communication Systems. 29(7):1269-1292. https://doi.org/10.1002/dac.3098S12691292297Alrajeh, N. A., Lloret, J., & Canovas, A. (2014). A Framework for Obesity Control Using a Wireless Body Sensor Network. International Journal of Distributed Sensor Networks, 10(7), 534760. doi:10.1155/2014/534760Lopes I Silva B Rodrigues J Lloret J Proenca M A mobile health monitoring solution for weight control International Conference on Wireless Communications and Signal Processing (WCSP) Nanjing / China 2011 1 5Singh, N., Singh, A. K., & Singh, V. K. (2015). Design and performance of wearable ultrawide band textile antenna for medical applications. Microwave and Optical Technology Letters, 57(7), 1553-1557. doi:10.1002/mop.29131Lan, K., Chou, C.-M., Wang, T., & Li, M.-W. (2012). Using body sensor networks for motion detection: a cluster-based approach for green radio. Transactions on Emerging Telecommunications Technologies, 25(2), 199-216. doi:10.1002/ett.2559Lloret, J., Garcia, M., Catala, A., & Rodrigues, J. J. P. C. (2016). A group-based wireless body sensors network using energy harvesting for soccer team monitoring. International Journal of Sensor Networks, 21(4), 208. doi:10.1504/ijsnet.2016.079172Garcia M Catala A Lloret J Rodrigues J A wireless sensor network for soccer team monitoring International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS) Barcelona / Spain 2011 1 6Penders J Gyselinckx B Vullers R De Nil M Nimmala V van de Molengraft J Yazicioglu F Torfs T Leonov V Merken P Van Hoof C Human++: from technology to emerging health monitoring concepts 5th International Summer School and Symposium ISSS-MDBS on Medical Devices and Biosensors Hong Kong 2008 94 98Penders J Van de Molengraft J. Brown L Grundlehner B Gyselinckx B Van Hoof C Potential and challenges of body area networks for personal health Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC Minneapolis, U.S. 2009 6569 6572Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., … Kwak, K. S. (2010). A Comprehensive Survey of Wireless Body Area Networks. Journal of Medical Systems, 36(3), 1065-1094. doi:10.1007/s10916-010-9571-3Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84-93. doi:10.1109/mcom.2009.5350373Hall, P. S., Yang Hao, Nechayev, Y. I., Alomainy, A., Constantinou, C. C., Parini, C., … Bozzetti, M. (2007). Antennas and propagation for on-body communication systems. IEEE Antennas and Propagation Magazine, 49(3), 41-58. doi:10.1109/map.2007.4293935Mamaghanian, H., Khaled, N., Atienza, D., & Vandergheynst, P. (2011). Compressed Sensing for Real-Time Energy-Efficient ECG Compression on Wireless Body Sensor Nodes. IEEE Transactions on Biomedical Engineering, 58(9), 2456-2466. doi:10.1109/tbme.2011.2156795LAN-MAN Standards Committee the IEEE Computer Society IEEE standard for local and metropolitan area networks - part 15.4: low rate wireless personal area networks (LR-WPANs) 2011Petrova M Riihijarvi J Mahonen P Labella S Performance study of IEEE 802.15.4 using measurements and simulations IEEE Wireless Communications and Networking Conference (WCNC) Las Vegas, U.S. 2006 487 492Vaithiyanathan, J., Raju, R. K., & Sadayan, G. (2011). Performance Evaluation of IEEE 802.15.4 Using Association Process and Channel Measurement. Communications in Computer and Information Science, 409-417. doi:10.1007/978-3-642-22555-0_42Yazdi E Moravejosharieh A Willig A Pawlikowski K Coupling power and frequency adaptation for interference mitigation in IEEE 802.15.4-based mobile body sensor networks: part II 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC) Melbourne, Australia 2014 105 110Pelegris P Banitsas K Investigating the efficiency of IEEE 802.15.4 for medical monitoring applications 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC Boston, U.S. 2011 8215 8218Ranjit, J. S., & Shin, S. (2013). A Modified IEEE 802.15.4 Superframe Structure for Guaranteed Emergency Handling in Wireless Body Area Network. Network Protocols and Algorithms, 5(2), 1. doi:10.5296/npa.v5i2.3375Jianliang Zheng, & Lee, M. J. (2004). Will IEEE 802.15.4 make ubiquitous networking a reality?: a discussion on a potential low power, low bit rate standard. IEEE Communications Magazine, 42(6), 140-146. doi:10.1109/mcom.2004.1304251Toscano E Lo Bello L Cross-channel interference in IEEE 802.15.4 networks IEEE International Workshop on Factory Communication Systems, 2008. WFCS 2008 Dresden, Germany 2008 139 148Bashir F Baek WS Sthapit P Pandey D young Pyun J Coordinator assisted passive discovery for mobile end devices in IEEE 802.15.4 2013 IEEE Consumer Communications and Networking Conference (CCNC) Las Vegas, U.S. 2013 601 604Tabatabaei Yazdi E Willig A Pawlikowski K Shortening orphan time in IEEE 802.15.4: what can be gained 2013 19th IEEE International Conference on Networks (ICON) Singapore 2013 1 6Park, T. R., Kim, T. H., Choi, J. Y., Choi, S., & Kwon, W. H. (2005). Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA∕CA. Electronics Letters, 41(18), 1017. doi:10.1049/el:20051662Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535-547. doi:10.1109/49.840210IEEE Computer Society LAN MAN Standards Committee Wireless LAN medium access control (MAC) and physical layer (PHY) specifications 1997Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., Der Perre, L. V., Moerman, I., … Catthoor, F. (2008). Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer. IEEE Transactions on Wireless Communications, 7(9), 3359-3371. doi:10.1109/twc.2008.060057Xinhua Ling, Yu Cheng, Mark, J. W., & Xuemin Shen. (2008). A Renewal Theory Based Analytical Model for the Contention Access Period of IEEE 802.15.4 MAC. IEEE Transactions on Wireless Communications, 7(6), 2340-2349. doi:10.1109/twc.2008.070048Lee, C. Y., Cho, H. I., Hwang, G. U., Doh, Y., & Park, N. (2011). Performance modeling and analysis of IEEE 802.15.4 slotted CSMA/CA protocol with ACK mode. AEU - International Journal of Electronics and Communications, 65(2), 123-131. doi:10.1016/j.aeue.2010.02.007Wang, F., Zhao, Y., & Li, D. (2011). Analysis of CSMA/CA in IEEE 802.15.4. IET Communications, 5(15), 2187-2195. doi:10.1049/iet-com.2010.1007Zhu, J., Tao, Z., & Lv, C. (2011). Performance Evaluation of IEEE 802.15.4 CSMA/CA Scheme Adopting a Modified LIB Model. Wireless Personal Communications, 65(1), 25-51. doi:10.1007/s11277-011-0226-6Shu F Sakurai T Analysis of an energy conserving CSMA-CA GLOBECOM Washington DC, U.S. 2007 2536 2540Shu, F., & Sakurai, T. (2011). A new analytical model for the IEEE 802.15.4 CSMA-CA protocol. Computer Networks, 55(11), 2576-2591. doi:10.1016/j.comnet.2011.04.017Cano-Garcia, J. M., & Casilari, E. (2011). An empirical evaluation of the consumption of 802.15.4/ZigBee sensor motes in noisy environments. 2011 International Conference on Networking, Sensing and Control. doi:10.1109/icnsc.2011.5874886Baz, M., Mitchell, P. D., & Pearce, D. A. J. (2013). Versatile Analytical Model for Delay and Energy Evaluation in WPANs: A Case Study for IEEE 802.15.4 CSMA-CA. Wireless Personal Communications, 75(1), 415-445. doi:10.1007/s11277-013-1370-yLiu Q Czylwik A A priority-based adaptive service differentiation scheme for IEEE 802.15.4 sensor networks Proceedings of European Wireless 2014; 20th European Wireless Conference Barcelona, Spain 2014 1 6Golmie, N., Cypher, D., & Rebala, O. (s. f.). Performance evaluation of low rate WPANs for medical applications. IEEE MILCOM 2004. Military Communications Conference, 2004. doi:10.1109/milcom.2004.1494952Misic, J., Misic, V. B., & Shafi, S. (s. f.). Performance of IEEE 802.15.4 beacon enabled PAN with uplink transmissions in non-saturation mode - access delay for finite buffers. First International Conference on Broadband Networks. doi:10.1109/broadnets.2004.61Mišić, J., Shafi, S., & Mišić, V. B. (2005). The impact of MAC parameters on the performance of 802.15.4 PAN. Ad Hoc Networks, 3(5), 509-528. doi:10.1016/j.adhoc.2004.08.002Anastasi, G., Conti, M., & Di Francesco, M. (2011). A Comprehensive Analysis of the MAC Unreliability Problem in IEEE 802.15.4 Wireless Sensor Networks. IEEE Transactions on Industrial Informatics, 7(1), 52-65. doi:10.1109/tii.2010.2085440Lee, B.-H., Al Rasyid, M. U. H., & Wu, H.-K. (2012). Analysis of superframe adjustment and beacon transmission for IEEE 802.15.4 cluster tree networks. EURASIP Journal on Wireless Communications and Networking, 2012(1). doi:10.1186/1687-1499-2012-219Zimmerling, M., Ferrari, F., Mottola, L., Voigt, T., & Thiele, L. (2012). pTunes. Proceedings of the 11th international conference on Information Processing in Sensor Networks - IPSN ’12. doi:10.1145/2185677.2185730Rohm, D., Goyal, M., Hosseini, H., Divjak, A., & Bashir, Y. (2009). Configuring Beaconless IEEE 802.15.4 Networks Under Different Traffic Loads. 2009 International Conference on Advanced Information Networking and Applications. doi:10.1109/aina.2009.84Jin-Shyan Lee. (2006). Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks. IEEE Transactions on Consumer Electronics, 52(3), 742-749. doi:10.1109/tce.2006.1706465De Paz Alberola, R., & Pesch, D. (2012). Duty cycle learning algorithm (DCLA) for IEEE 802.15.4 beacon-enabled wireless sensor networks. Ad Hoc Networks, 10(4), 664-679. doi:10.1016/j.adhoc.2011.06.006Barbieri, A., Chiti, F., & Fantacci, R. (2006). WSN17-2: Proposal of an Adaptive MAC Protocol for Efficient IEEE 802.15.4 Low Power Communications. IEEE Globecom 2006. doi:10.1109/glocom.2006.989Jeon, J., Lee, J. W., Ha, J. Y., & Kwon, W. H. (2007). DCA: Duty-Cycle Adaptation Algorithm for IEEE 802.15.4 Beacon-Enabled Networks. 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring. doi:10.1109/vetecs.2007.35Kang, M., Chong, J., Hyun, H., Kim, S., Jung, B., & Sung, D. (2007). Adaptive Interference-Aware Multi-Channel Clustering Algorithm in a ZigBee Network in the Presence of WLAN Interference. 2007 2nd International Symposium on Wireless Pervasive Computing. doi:10.1109/iswpc.2007.342601Yi, P., Iwayemi, A., & Zhou, C. (2011). Developing ZigBee Deployment Guideline Under WiFi Interference for Smart Grid Applications. IEEE Transactions on Smart Grid, 2(1), 110-120. doi:10.1109/tsg.2010.2091655Tang, L., Wang, K.-C., Huang, Y., & Gu, F. (2007). Channel Characterization and Link Quality Assessment of IEEE 802.15.4-Compliant Radio for Factory Environments. IEEE Transactions on Industrial Informatics, 3(2), 99-110. doi:10.1109/tii.2007.898414Sha M Xing G Zhou G Liu S Wang X C-MAC: model-driven concurrent medium access control for wireless sensor networks IEEE INFOCOM 2009 Rio de Janeiro, Brazil 2009 1845 1853 10.1109/INFCOM.2009.5062105Peizhong Yi, Iwayemi, A., & Chi Zhou. (2010). Frequency agility in a ZigBee network for smart grid application. 2010 Innovative Smart Grid Technologies (ISGT). doi:10.1109/isgt.2010.5434747Torabi N Wong W Leung VCM A robust coexistence scheme for IEEE 802.15.4 wireless personal area networks IEEE Consumer Communications and Networking Conference (CCNC) Las Vegas, U.S. 2011 1031 1035 10.1109/CCNC.2011.5766322IEEE standard for local and metropolitan area networks - part 15.6: wireless body area networks IEEE Std 802.15.6-2012 2012 1 271 10.1109/IEEESTD.2012.6161600Kim, S., Kim, S., Kim, J.-W., & Eom, D.-S. (2012). Flexible beacon scheduling scheme for interference mitigation in body sensor networks. 2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON). doi:10.1109/secon.2012.6275772Bradai N Fourati LC Kamoun L Performance analysis of medium access control protocol for wireless body area networks 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA) Barcelona, Spain 2013 916 921Moravejosharieh A Yazdi ET Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part I: the need for enhancement IEEE 16th International Conference on Computational Science and Engineering (CSE) Sydney, Australia 2013 1226 1231Moravejosharieh A Yazdi ET Willig A Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part II: greedy channel utilization 19th IEEE International Conference on Networks (ICON) Singapore 2013 1 6Moravejosharieh A Yazdi E Willig A Pawlikowski K Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: continuous hopping approach Australasian Telecommunication Networks and Applications Conference (ATNAC) Melbourne, Australia 2014 93 98 10.1109/ATNAC.2014.7020880Moravejosharieh, A. H. (2015). Frequency-Adaptive Approach In IEEE 802.15.4 Wireless Body Sensor Networks: Continuous-Assessment or Periodic-Assessment? International Journal of Information, Communication Technology and Applications, 1(1), 19. doi:10.17972/ajicta2015113Moravejosharieh A Yazdi E Pawlikowski K Sirisena H Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: adaptive phase-shifting approach International Telecommunication Networks and Applications Conference (ITNAC) Sydney, Australia 2015 93 98Bian, K., Park, J.-M., & Gao, B. (2014). Channel Assignment for Multi-hop Cognitive Radio Networks. Cognitive Radio Networks, 101-116. doi:10.1007/978-3-319-07329-3_6Bian, K., Park, J.-M., & Gao, B. (2014). Coexistence-Aware Spectrum Sharing for Homogeneous Cognitive Radio Networks. Cognitive Radio Networks, 61-75. doi:10.1007/978-3-319-07329-3_4Wu C Yan H Huo H A multi-channel MAC protocol design based on IEEE 802.15.4 standard in industry 2012 10th IEEE International Conference on Industrial Informatics (INDIN) Beijing, China 2012 1206 1211 10.1109/INDIN.2012.6300916Incel, O. D. (2011). A survey on multi-channel communication in wireless sensor networks. Computer Networks, 55(13), 3081-3099. doi:10.1016/j.comnet.2011.05.020Kim Y Shin H Cha H Y-MAC: an energy-efficient multi-channel MAC protocol for dense wireless sensor networks Proceedings of the 7th International Conference on Information Processing in Sensor Networks IPSN '08 St. Louis MO, U.S. 2008 53 63Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: a survey. IEEE Communications Magazine, 44(4), 115-121. doi:10.1109/mcom.2006.1632658Wykret T Correia L Macedo D Giacomin J Andrade L Evaluation and avoidance of interference in WSN: a multi-radio node prototype using dynamic spectrum allocation IFIP Wireless Days (WD) Valencia, Spain 2013 1 3 10.1109/WD.2013.6686533Doyle L Sutton P Nolan K Lotze J Ozgul B Rondeau T Fahmy S Lahlou H DaSilva L Experiences from the IRIS testbed in dynamic spectrum access and cognitive radio experimentation IEEE Symposium on New Frontiers in Dynamic Spectrum Singapore 2010 1 8 10.1109/DYSPAN.2010.5457835Ansari, J., Zhang, X., & Mahonen, P. (2010). Multi-radio medium access control protocol for wireless sensor networks. International Journal of Sensor Networks, 8(1), 47. doi:10.1504/ijsnet.2010.034066Liu Z Wu W A dynamic multi-radio multi-channel MAC protocol for wireless sensor networks 2nd International Conference on Communication Software and Networks (ICCSN) Singapore 2010 105 109Xu, W., Trappe, W., & Zhang, Y. (2008). Defending wireless sensor networks from radio interference through channel adaptation. ACM Transactions on Sensor Networks, 4(4), 1-34. doi:10.1145/1387663.1387664Kim Y Shin H Cha H Y-MAC: an energy-efficient multi-channel MAC protocol for dense wireless sensor networks Proceedings of the 7th IEEE Computer Society International Conference on Information Processing in Sensor Networks IPSN '08 Washington, DC, USA 2008 53 63Tae Hyun Kim, Jae Yeol Ha, & Sunghyun Choi. (2009). Improving Spectral and Temporal Efficiency of Collocated IEEE 802.15.4 LR-WPANs. IEEE Transactions on Mobile Computing, 8(12), 1596-1609. doi:10.1109/tmc.2009.85Chowdhury, K. R., Nandiraju, N., Chanda, P., Agrawal, D. P., & Zeng, Q.-A. (2009). Channel allocation and medium access control for wireless sensor networks. Ad Hoc Networks, 7(2), 307-321. doi:10.1016/j.adhoc.2008.03.004Deylami, M., & Jovanov, E. (2012). A distributed and collaborative scheme for mitigating coexistence in IEEE 802.15.4 based WBANs. Proceedings of the 50th Annual Southeast Regional Conference on - ACM-SE ’12. doi:10.1145/2184512.2184514Deylami, M. N., & Jovanov, E. (2014). A Distributed Scheme to Manage The Dynamic Coexistence of IEEE 802.15.4-Based Health-Monitoring WBANs. IEEE Journal of Biomedical and Health Informatics, 18(1), 327-334. doi:10.1109/jbhi.2013.2278217Deylami M Jovanov E An implementation of a distributed scheme for managing the dynamic coexistence of wireless body area networks Southeastcon, 2013 Proceedings of IEEE Jacksonville, U.S. 2013 1 6 10.1109/SECON.2013.6567446Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A Survey on Wireless Body Area Networks: Technologies and Design Challenges. IEEE Communications Surveys & Tutorials, 16(3), 1635-1657. doi:10.1109/surv.2014.012214.00007Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. M. (2010). Body Area Networks: A Survey. Mobile Networks and Applications, 16(2), 171-193. doi:10.1007/s11036-010-0260-8Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless Body Area Networks: A Survey. IEEE Communications Surveys & Tutorials, 16(3), 1658-1686. doi:10.1109/surv.2013.121313.00064Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications, 17(1), 80-88. doi:10.1109/mwc.2010.5416354ULLAH, S., KHAN, P., ULLAH, N., SALEEM, S., HIGGINS, H., & Sup KWAK, K. (2009). A Review of Wireless Body Area Networks for Medical Applications. International Journal of Communications, Network and System Sciences, 02(08), 797-803. doi:10.4236/ijcns.2009.28093Boulis, A., Smith, D., Miniutti, D., Libman, L., & Tselishchev, Y. (2012). Challenges in body area networks for healthcare: the MAC. IEEE Communications Magazine, 50(5), 100-106. doi:10.1109/mcom.2012.6194389Pantelopoulos A Bourbakis N A survey on wearable biosensor systems for health monitoring 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vancouver, Canada 2008 4887 4890 10.1109/IEMBS.2008.4650309Takei, K., Honda, W., Harada, S., Arie, T., & Akita, S. (2014). Toward Flexible and Wearable Human-Interactive Health-Monitoring Devices. Advanced Healthcare Materials, 4(4), 487-500. doi:10.1002/adhm.201400546Caldeira, J. M. L. P., Rodrigues, J. J. P. C., & Lorenz, P. (2013). Intra-Mobility Support Solutions for Healthcare Wireless Sensor Networks–Handover Issues. IEEE Sensors Journal, 13(11), 4339-4348. doi:10.1109/jsen.2013.2267729Carrano, R. C., Passos, D., Magalhaes, L. C. S., & Albuquerque, C. V. N. (2014). Survey and Taxonomy of Duty Cycling Mechanisms in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 16(1), 181-194. doi:10.1109/surv.2013.052213.00116Sudevalayam, S., & Kulkarni, P. (2011). Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Communications Surveys & Tutorials, 13(3), 443-461. doi:10.1109/surv.2011.060710.00094Khanafer, M., Guennoun, M., & Mouftah, H. T. (2014). A Survey of Beacon-Enabled IEEE 802.15.4 MAC Protocols in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 16(2), 856-876. doi:10.1

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    IEEE 802.15.4e: a Survey

    Get PDF
    Several studies have highlighted that the IEEE 802.15.4 standard presents a number of limitations such as low reliability, unbounded packet delays and no protection against interference/fading, that prevent its adoption in applications with stringent requirements in terms of reliability and latency. Recently, the IEEE has released the 802.15.4e amendment that introduces a number of enhancements/modifications to the MAC layer of the original standard in order to overcome such limitations. In this paper we provide a clear and structured overview of all the new 802.15.4e mechanisms. After a general introduction to the 802.15.4e standard, we describe the details of the main 802.15.4e MAC behavior modes, namely Time Slotted Channel Hopping (TSCH), Deterministic and Synchronous Multi-channel Extension (DSME), and Low Latency Deterministic Network (LLDN). For each of them, we provide a detailed description and highlight the main features and possible application domains. Also, we survey the current literature and summarize open research issues

    A Comprehensive Analysis of Literature Reported Mac and Phy Enhancements of Zigbee and its Alliances

    Get PDF
    Wireless communication is one of the most required technologies by the common man. The strength of this technology is rigorously progressing towards several novel directions in establishing personal wireless networks mounted over on low power consuming systems. The cutting-edge communication technologies like bluetooth, WIFI and ZigBee significantly play a prime role to cater the basic needs of any individual. ZigBee is one such evolutionary technology steadily getting its popularity in establishing personal wireless networks which is built on small and low-power digital radios. Zigbee defines the physical and MAC layers built on IEEE standard. This paper presents a comprehensive survey of literature reported MAC and PHY enhancements of ZigBee and its contemporary technologies with respect to performance, power consumption, scheduling, resource management and timing and address binding. The work also discusses on the areas of ZigBee MAC and PHY towards their design for specific applications

    Mutual Interference in Large Populations of Co-Located IEEE 802.15.4 Body Sensor Networks - A Sensitivity Analysis

    Get PDF
    We consider scenarios where a large number of wireless body sensor networks (WBSN) meets at the same location, as can happen for example at sports events, and assess the impact of their mutual interference on their achievable transmission reliability. In particular, we consider several of MAC- and application parameters for a range of static and dynamic schemes for allocating WBSNs to frequencies, and determine their relative impacts on achievable performance. Our results indicate that parameters related to the MAC backoff scheme have by far the largest impact on performance, and that frequency adaptation can provide substantial performance benefits

    Tackling Mobility in Low Latency Deterministic Multihop IEEE 802.15.4e Sensor Network

    Get PDF
    Providing reliable services for low latency (LL) applications within the IoT context is a challenging issue. Several wireless sensor network (WSN) applications require deterministic systems that ensure a reliable and low latency aggregation service. The IEEE 802.15.4e standard, which is considered as the backbone of the IoT regarding WSN, has presented the low-latency deterministic network mode (LLDN) that can fulfil the major requirements of low latency applications. Meanwhile, several LL applications, for example in the automotive industry, demand the support of sensor node mobility which in turn affects network performance. Node mobility triggers several dissociations from the network that will increase latency and degrade node throughput. In this paper, we investigate the impact of node mobility over the LLDN mode while defining key factors that maximize latency and degrade throughput. In addition, an enhanced version of the LLDN mode is presented and evaluated that supports node mobility while maintaining the targeted limits of LL application requirements. The proposed mobility aware (MA-LLDN) technique manages to reduce the dissociation overhead by a factor of 75% while the packet delivery ratio (PDR) has been enhanced by 30%. Furthermore, this paper presents an analytical model that provides a snapshot of the tradeoff process between different metrics in the IEEE 802.15.4e LLDN design, which must be considered prior network deployment in mobile LL applications

    Energy-aware medium access control protocols for wireless sensors network applications

    Get PDF
    The main purpose of this thesis was to investigate energy efficient Medium Access Control (MAC) protocols designed to extend the lifetime of a wireless sensor network application, such as tracking, environment monitoring, home security, patient monitoring, e.g., foetal monitoring in the last weeks of pregnancy. From the perspective of communication protocols, energy efficiency is one of the most important issues, and can be addressed at each layer of the protocol stack; however, our research only focuses on the medium access control (MAC) layer. An energy efficient MAC protocol was designed based on modifications and optimisations for a synchronized power saving Sensor MAC (SMAC) protocol, which has three important components: periodic listen and sleep, collision and overhearing avoidance and message passing. The Sensor Block Acknowledgement (SBACK) MAC protocol is proposed, which combines contention-based, scheduling-based and block acknowledgement-based schemes to achieve energy efficiency. In SBACK, the use of ACK control packets is reduced since it will not have an ACK packet for every DATA packet sent; instead, one special packet called Block ACK Response will be used at the end of the transmission of all data packets. This packet informs the sender of how many packets were received by the receiver, reducing the number of ACK control packets we intended to reduce the power consumption for the nodes. Hence more useful data packets can be transmitted. A comparison study between SBACK and SMAC protocol is also performed. Considering 0% of packet losses, SBACK decreases the energy consumption when directly compared with S-MAC, we will have always a decrease of energy consumption. Three different transceivers will be used and considering a packet loss of 10% we will have a decrease of energy consumption between 10% and 0.1% depending on the transceiver. When there are no retransmissions of packets, SBACK only achieve worst performance when the number of fragments is less than 12, after that the decrease of average delay increases with the increase of the fragments sent. When 10% of the packets need retransmission only for the TR1000 transceiver worst results occurs in terms of energy waste, all other transceivers (CC2420 and AT86RF230) achieve better results. In terms of delay if we need to retransmit more than 10 packets the SBACK protocol always achieves better performance when comparing with the other MAC protocols that uses ACK

    Optimization of positioning capabilities in wireless sensor networks : from power efficiency to medium access

    Get PDF
    In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime of WSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the physical layer, power control and resource optimization may play an important role, as well as at higher layers through network topology and MAC protocols. The objective of this Thesis is to study the optimization of resources in WSN that are employed for positioning purposes, with the ultimate goal being the minimization of power consumption. We focus on anchor-based positioning, where a subset of the WSN nodes know their location (anchors) and send ranging signals to nodes with unknown position (targets) to assist them in estimating it through distance-related measurements. Two well known of such measurements are received signal strength (RSS) and time of arrival (TOA), in which this Thesis focuses. In order to minimize power consumption while providing a certain quality of positioning service, in this dissertation we research on the problems of power control and node selection. Aiming at a distributed implementation of the proposed techniques, we resort to the tools of non-cooperative game theory. First, transmit power allocation is addressed for RSS based ranging. Using game theory formulation, we develop a potential game leading to an iterated best response algorithm with sure convergence. As a performance metric, we introduce the geometric dilution of precision (GDOP), which is shown to help achieving a suitable geometry of the selected anchor nodes. The proposed scheme and relative distributed algorithms provide good equilibrium performance in both static and dynamic scenarios. Moreover, we present a distributed, low complexity implementation and analyze it in terms of computational complexity. Results show that performance close to that of exhaustive search is possible. We then address the transmit power allocation problem for TOA based ranging, also resorting to a game theoretic formulation. In this setup, and also considering GDOP as performance metric, a supermodular game formulation is proposed, along with a distributed algorithm with guaranteed convergence to a unique solution, based on iterated best response. We analyze the proposed algorithm in terms of the price of anarchy (PoA), that is, compared to a centralized optimum solution, and shown to have a moderate performance loss. Finally, this dissertation addresses the effect of different MAC protocols and topologies in the positioning performance. In this direction, we study the performance of mesh and cluster-tree topologies defined in WSN standards. Different topologies place different constraints in network connectivity, having a substantial impact on the performance of positioning algorithms. While mesh topology allows high connectivity with large energy consumption, cluster-tree topologies are more energy efficient but suffer from reduced connectivity and poor positioning performance. In order to improve the performance of cluster-tree topologies, we propose a cluster formation algorithm. It significantly improves connectivity with anchor nodes, achieving vastly improved positioning performance.En les xarxes de sensors sense fils (WSN), l'habilitat dels nodes sensors per conèixer la seva posició facilita una gran varietat d'aplicacions per la monitorització, el control i l'automatització. Així, les dades que proporciona un sensor tenen sentit només si la posició pot ésser determinada. Moltes WSN són desplegades en interiors o en àrees on la senyal de sistemes globals de navegació per satèl.lit (GNSS) no té prou cobertura, i per tant, el posicionament basat en GNSS no pot ésser garantitzat. En aquests escenaris, les WSN poden proporcionar una bona precisió en posicionament. Normalment, en WSN els nodes són alimentats amb bateries. Aquestes bateries són difícils de reemplaçar. Per tant, el consum de potència és un aspecte important i és crucial dissenyar estratègies efectives per maximitzar el temps de vida de la bateria. L'optimització del consum de potència pot ser fet a diferents capes del protocol. Per exemple, en la capa física, el control de potència i l'optimització dels recursos juguen un rol important, igualment que la topologia de xarxa i els protocols MAC en les capes més altes. L'objectiu d'aquesta tesi és estudiar l¿optimització de recursos en WSN que s'utilitzen per fer posicionament, amb el propòsit de minimitzar el consum de potència. Ens focalitzem en el posicionament basat en àncora, en el qual un conjunt de nodes coneixen la seva localització (nodes àncora) i envien missatges als nodes que no saben la seva posició per ajudar-los a estimar les seves coordenades amb mesures de distància. Dues classes de mesures són la potència de la senyal rebuda (RSS) i el temps d'arribada (TOA) en les quals aquesta tesi està focalitzada. Per minimitzar el consum de potència mentre que es proporciona suficient qualitat en el posicionament, en aquesta tesi estudiem els problemes de control de potència i selecció de nodes. Tenint en compte una implementació distribuïda de les tècniques proposades, utilitzem eïnes de teoria de jocs no cooperatius. Primer, l'assignació de potència transmesa és abordada pel càlcul de la distància amb RSS. Utilitzant la teoria de jocs, desenvolupem un joc potencial que convergeix amb un algoritme iteratiu basat en millor resposta (best response). Com a mètrica d'error, introduïm la dilució de la precisió geomètrica (GDOP) que mostra quant d'apropiada és la geometria dels nodes àncora seleccionats. L'esquema proposat i els algoritmes distribuïts proporcionen una bona resolució de l'equilibri en l'escenari estàtic i dinàmic. Altrament, presentem una implementació distribuïda i analitzem la seva complexitat computacional. Els resultats obtinguts són similars als obtinguts amb un algoritme de cerca exhaustiva. El problema d'assignació de la potència transmesa en el càlcul de la distància basat en TOA, també és tractat amb teoria de jocs. En aquest cas, considerant el GDOP com a mètrica d'error, proposem un joc supermodular juntament amb un algoritme distribuït basat en millor resposta amb convergència garantida cap a una única solució. Analitzem la solució proposada amb el preu de l'anarquia (PoA), és a dir, es compara la nostra solució amb una solució òptima centralitzada mostrant que les pèrdues són moderades. Finalment, aquesta tesi tracta l'efecte que causen diferents protocols MAC i topologies en el posicionament. En aquesta direcció, estudiem les topologies de malla i arbre formant clusters (cluster-tree) que estan definides als estàndards de les WSN. La diferència entre les topologies crea diferents restriccions en la connectivitat de la xarxa, afectant els resultats de posicionament. La topologia de malla permet una elevada connectivitat entre els nodes amb gran consum d'energia, mentre que les topologies d'arbre són més energèticament eficients però amb baixa connectivitat entre els nodes i baix rendiment pel posicionament. Per millorar la qualitat del posicionament en les topologies d'arbre, proposem un algoritme de formació de clústers.Postprint (published version

    Modeling and Implementation of Wireless Sensor Networks for Logistics Applications

    Get PDF
    Logistics has experienced a long time of developments and improvements based on the advanced vehicle technologies, transportation systems, traffic network extension and logistics processes. In the last decades, the complexity has increased significantly and this has created complex logistics networks over multiple continents. Because of the close cooperation, these logistics networks are highly dependent on each other in sharing and processing the logistics information. Every customer has many suppliers and vice versa. The conventional centralized control continues but reaches some limitations such as the different distribution of suppliers, the complexity and flexibility of processing orders or the dynamics of the logistic objects. In order to overcome these disadvantages, the paradigm of autonomous logistics is proposed and promises a better technical solution for current logistics systems. In autonomous logistics, the decision making is shifted toward the logistic objects which are defined as material items (e.g., vehicles, containers) or immaterial items (e.g., customer orders) of a networked logistics system. These objects have the ability to interact with each other and make decisions according to their own objectives. In the technical aspect, with the rapid development of innovative sensor technology, namely Wireless Sensor Networks (WSNs), each element in the network can self-organize and interact with other elements for information transmission. The attachment of an electronic sensor element into a logistic object will create an autonomous environment in both the communication and the logistic domain. With this idea, the requirements of logistics can be fulfilled; for example, the monitoring data can be precise, comprehensive and timely. In addition, the goods flow management can be transferred to the information logistic object management, which is easier by the help of information technologies. However, in order to transmit information between these logistic objects, one requirement is that a routing protocol is necessary. The Opportunistic relative Distance-Enabled Uni-cast Routing (ODEUR ) protocol which is proposed and investigated in this thesis shows that it can be used in autonomous environments like autonomous logistics. Moreover, the support of mobility, multiple sinks and auto-connection in this protocol enhances the dynamics of logistic objects. With a general model which covers a range from low-level issues to high-level protocols, many services such as real time monitoring of environmental conditions, context-aware applications and localization make the logistic objects (embedded with sensor equipment) more advanced in information communication and data processing. The distributed management service in each sensor node allows the flexible configuration of logistic items at any time during the transportation. All of these integrated features introduce a new technical solution for smart logistic items and intelligent transportation systems. In parallel, a management system, WSN data Collection and Management System (WiSeCoMaSys), is designed to interact with the deployed Wireless Sensor Networks. This tool allows the user to easily manipulate the sensor networks remotely. With its rich set of features such as real time data monitoring, data analysis and visualization, per-node management, and alerts, this tool helps both developers and users in the design and deployment of a sensor network. In addition, an analytical model is developed for comparison with the results from simulations and experiments. Focusing on the use of probability theory to model the network links, this model considers several important factors such as packet reception rate and network traffic which are used in the simulation and experiment parts. Moreover, the comparison between simulation, experiment and analytical results is also carried out to estimate the accuracy of the design and make several improvements of the simulation accuracy. Finally, all of the above parts are integrated in one unique system. This system is verified by both simulations in logistic scenarios (e.g., harbors, warehouses and containers) and experiments. The results show that the proposed model and protocol have a good packet delivery rate, little memory requirements and low delay. Accordingly, this system design is practical and applicable in logistics
    corecore