183 research outputs found

    Energy-aware data prefetching for multi-speed disks

    Full text link

    Dynamic data shapers optimize performance in Dynamic Binary Optimization (DBO) environment

    Get PDF
    Processor hardware has been architected with the assumption that most data access patterns would be linearly spatial in nature. But, most applications involve algorithms that are designed with optimal efficiency in mind, which results in non-spatial, multi-dimensional data access. Moreover, this data view or access pattern changes dynamically in different program phases. This results in a mismatch between the processor hardware\u27s view of data and the algorithmic view of data, leading to significant memory access bottlenecks. This variation in data views is especially more pronounced in applications involving large datasets, leading to significantly increased latency and user response times. Previous attempts to tackle this problem were primarily targeted at execution time optimization. We present a dynamic technique piggybacked on the classical dynamic binary optimization (DBO) to shape the data view for each program phase differently resulting in program execution time reduction along with reductions in access energy. Our implementation rearranges non-adjacent data into a contiguous dataview. It uses wrappers to replace irregular data access patterns with spatially local dataview. HDTrans, a runtime dynamic binary optimization framework has been used to perform runtime instrumentation and dynamic data optimization to achieve this goal. This scheme not only ensures a reduced program execution time, but also results in lower energy use. Some of the commonly used benchmarks from the SPEC 2006 suite were profiled to determine irregular data accesses from procedures which contributed heavily to the overall execution time. Wrappers built to replace these accesses with spatially adjacent data led to a significant improvement in the total execution time. On average, 20% reduction in time was achieved along with a 5% reduction in energy

    Prefetch throttling and data pinning for improving performance of shared caches

    Get PDF
    In this paper, we (i) quantify the impact of compilerdirected I/O prefetching on shared caches at I/O nodes. The experimental data collected shows that while I/O prefetching brings some benefits, its effectiveness reduces significantly as the number of clients (compute nodes) is increased; (ii) identify interclient misses due to harmful I/O prefetches as one of the main sources for this reduction in performance with increased number of clients; and (iii) propose and experimentally evaluate prefetch throttling and data pinning schemes to improve performance of I/O prefetching. Prefetch throttling prevents one or more clients from issuing further prefetches if such prefetches are predicted to be harmful, i.e., replace from the memory cache the useful data accessed by other clients. Data pinning on the other hand makes selected data blocks immune to harmful prefetches by pinning them in the memory cache. We show that these two schemes can be applied in isolation or combined together, and they can be applied at a coarse or fine granularity. Our experiments with these two optimizations using four disk-intensive applications reveal that they can improve performance by 9.7% and 15.1% on average, over standard compiler-directed I/O prefetching and no-prefetch case, respectively, when 8 clients are used. © 2008 IEEE

    Optimizing for a Many-Core Architecture without Compromising Ease-of-Programming

    Get PDF
    Faced with nearly stagnant clock speed advances, chip manufacturers have turned to parallelism as the source for continuing performance improvements. But even though numerous parallel architectures have already been brought to market, a universally accepted methodology for programming them for general purpose applications has yet to emerge. Existing solutions tend to be hardware-specific, rendering them difficult to use for the majority of application programmers and domain experts, and not providing scalability guarantees for future generations of the hardware. This dissertation advances the validation of the following thesis: it is possible to develop efficient general-purpose programs for a many-core platform using a model recognized for its simplicity. To prove this thesis, we refer to the eXplicit Multi-Threading (XMT) architecture designed and built at the University of Maryland. XMT is an attempt at re-inventing parallel computing with a solid theoretical foundation and an aggressive scalable design. Algorithmically, XMT is inspired by the PRAM (Parallel Random Access Machine) model and the architecture design is focused on reducing inter-task communication and synchronization overheads and providing an easy-to-program parallel model. This thesis builds upon the existing XMT infrastructure to improve support for efficient execution with a focus on ease-of-programming. Our contributions aim at reducing the programmer's effort in developing XMT applications and improving the overall performance. More concretely, we: (1) present a work-flow guiding programmers to produce efficient parallel solutions starting from a high-level problem; (2) introduce an analytical performance model for XMT programs and provide a methodology to project running time from an implementation; (3) propose and evaluate RAP -- an improved resource-aware compiler loop prefetching algorithm targeted at fine-grained many-core architectures; we demonstrate performance improvements of up to 34.79% on average over the GCC loop prefetching implementation and up to 24.61% on average over a simple hardware prefetching scheme; and (4) implement a number of parallel benchmarks and evaluate the overall performance of XMT relative to existing serial and parallel solutions, showing speedups of up to 13.89x vs.~ a serial processor and 8.10x vs.~parallel code optimized for an existing many-core (GPU). We also discuss the implementation and optimization of the Max-Flow algorithm on XMT, a problem which is among the more advanced in terms of complexity, benchmarking and research interest in the parallel algorithms community. We demonstrate better speed-ups compared to a best serial solution than previous attempts on other parallel platforms

    Profiler and compiler assisted adaptive I/O prefetching for shared storage caches

    Get PDF
    I/O prefetching has been employed in the past as one of the mech- anisms to hide large disk latencies. However, I/O prefetching in parallel applications is problematic when multiple CPUs share the same set of disks due to the possibility that prefetches from different CPUs can interact on shared memory caches in the I/O nodes in complex and unpredictable ways. In this paper, we (i) quantify the impact of compiler-directed I/O prefetching - developed originally in the context of sequential execution - on shared caches at I/O nodes. The experimental data collected shows that while I/O prefetching brings benefits, its effectiveness reduces significantly as the number of CPUs is increased; (ii) identify inter-CPU misses due to harmful prefetches as one of the main sources for this re- duction in performance with the increased number of CPUs; and (iii) propose and experimentally evaluate a profiler and compiler assisted adaptive I/O prefetching scheme targeting shared storage caches. The proposed scheme obtains inter-thread data sharing information using profiling and, based on the captured data sharing patterns, divides the threads into clusters and assigns a separate (customized) I/O prefetcher thread for each cluster. In our approach, the compiler generates the I/O prefetching threads automatically. We implemented this new I/O prefetching scheme using a compiler and the PVFS file system running on Linux, and the empirical data collected clearly underline the importance of adapting I/O prefetching based on program phases. Specifically, our pro- posed scheme improves performance, on average, by 19.9%, 11.9% and http://dx.doi.org/10.3% over the cases without I/O prefetching, with independent I/O prefetching (each CPU is performing compiler-directed I/O prefetching independently), and with one CPU prefetching (one CPU is reserved for prefetching on behalf of others), respectively, when 8 CPUs are used. Copyright 2008 ACM

    Effective Compile-Time Analysis for Data Prefetching In Java

    Get PDF
    The memory hierarchy in modern architectures continues to be a major performance bottleneck. Many existing techniques for improving memory performance focus on Fortran and C programs, but memory latency is also a barrier to achieving high performance in object-oriented languages. Existing software techniques are inadequate for exposing optimization opportunities in object-oriented programs. One key problem is the use of high-level programming abstractions which make analysis difficult. Another challenge is that programmers use a variety of data structures, including arrays and linked structures, so optimizations must work on a broad range of programs. We develop a new unified data-flow analysis for identifying accesses to arrays and linked structures called recurrence analysis. Prior approaches that identify these access patterns are ad hoc, or treat arrays and linked structures independently. The data-flow analysis is intra- and inter-procedural, which is important in Java programs that use encapsulation to hide implementation details. We sho
    corecore