
Prefetch Throttling and Data Pinning for Improving
Performance of Shared Caches

Ozcan Ozturk
Bilkent University

Email: ozturk@cs.bilkent.edu.tr

Seung Woo Son, Mahmut Kandemir
Pennsylvania State University

Email: {sson,kandemir}@cse.psu.edu

Mustafa Karakoy
Imperial College

Email: m.karakoy@ic.ac.uk

Abstract—In this paper, we (i) quantify the impact of compiler-
directed I/O prefetching on shared caches at I/O nodes. The
experimental data collected shows that while I/O prefetching
brings some benefits, its effectiveness reduces significantly as the
number of clients (compute nodes) is increased; (ii) identify inter-
client misses due to harmful I/O prefetches as one of the main
sources for this reduction in performance with increased number
of clients; and (iii) propose and experimentally evaluate prefetch
throttling and data pinning schemes to improve performance of
I/O prefetching. Prefetch throttling prevents one or more clients
from issuing further prefetches if such prefetches are predicted to
be harmful, i.e., replace from the memory cache the useful data
accessed by other clients. Data pinning on the other hand makes
selected data blocks immune to harmful prefetches by pinning
them in the memory cache. We show that these two schemes can
be applied in isolation or combined together, and they can be
applied at a coarse or fine granularity. Our experiments with
these two optimizations using four disk-intensive applications
reveal that they can improve performance by 9.7% and 15.1%
on average, over standard compiler-directed I/O prefetching and
no-prefetch case, respectively, when 8 clients are used.

I. INTRODUCTION

As high-performance applications continuously grow in
both size and complexity, there is also a corresponding in-
crease in the sizes of the data sets they process. Most of
the data read and written by these applications are disk
resident, and therefore, their I/O behavior is a critical factor
in determining their overall performance. Unfortunately, most
of the I/O parallelism in high-performance applications is
dictated by decisions taken during computation parallelization.
As a result, I/O parallelism may not be well coordinated across
clients (compute nodes), especially when the I/O nodes are
shared by multiple clients.

An instance of this situation is I/O prefetching, which is
an important optimization for improving performance, as has
been demonstrated in the past [27], [31], [25], [32], [18], [5].
In I/O prefetching, data is brought from the disk to the memory
cache ahead of time to hide the latency of the disk access.
However, I/O prefetching is known to be very sensitive to
timing [25]. First, an early prefetch may not be very useful
as the data block brought (prefetched) into the memory cache
can be discarded before it is used. Second, a late prefetch
may not be very useful either since it cannot eliminate the
entire disk latency. Third, a prefetched data can be even
harmful by kicking out a data block from the cache whose next
usage is earlier than that of the prefetched block. In a shared
storage cache (i.e., a memory cache in an I/O node shared by
multiple clients, as shown in Figure 1), this type of “harmful
prefetches” can involve different clients as well. For example,
a prefetched data block can displace a data block which
would be accessed earlier (by possibly another client) than
the prefetched data block. We can distinguish between two

types of such harmful I/O prefetches. An intra-client harmful
prefetch is said to occur when the prefetched data block
replaces a block that will be used by the prefetching node. By
comparison, an inter-client harmful prefetching occurs when
the prefetched block replaces a data block that will be used
(before the prefetched block being accessed) by another client.

Clearly, the number of harmful prefetches can increase
with the increased number of clients, and consequently, one
can expect the harmful prefetch problem to be more severe
as the degree of sharing of an I/O node increases. This
paper demonstrates the magnitude of this problem using four
applications that process disk-resident data sets and software
(compiler-directed) prefetching, and proposes two solutions –
which can be used in isolation or together – to address it. We
call our first solution “prefetch throttling” as it controls the
number of prefetches issued to the disk system. Our second
solution, referred to as “data pinning,” prevents selected data
blocks from being removed from the shared cache as a result
of prefetch operations.

We can summarize the major contributions of this work as
follows:
• We quantify the impact of conventional compiler-directed

I/O prefetching on shared caches at I/O nodes. The experimen-
tal data collected using four high-performance applications
that use disk-resident data sets reveals that, while conven-
tional I/O prefetching brings certain performance benefits, its
effectiveness reduces significantly as the number of clients is
increased.
• We identify inter-client misses originating from harmful

prefetches as one of the important sources for this reduction in
I/O prefetching performance with increased number of clients.
• We propose and experimentally evaluate two novel

schemes, “prefetch throttling” and “data pinning”, to improve
performance of I/O prefetching. Prefetch throttling prevents
one or more clients from issuing further prefetches if such
prefetches are predicted to be harmful, i.e., replace from the
memory cache the useful data accessed by other clients before
the prefetched data being accessed. Data pinning on the other
hand makes selected data blocks immune to harmful prefetches
by pinning them in the memory cache. We show that these two
optimizations can be applied in isolation or can be combined
together. In addition, they can be applied at a coarse or fine
granularity (in this work we evaluate both these options).

The proposed I/O optimization schemes can be implemented
at the file system level or at the disk controller level. Our
experiments with a file system based implementation (using
PVFS [4]) on a Linux cluster of these two schemes reveal
that they can improve performance (overall execution time)
by 9.7% and 15.1% on average, over standard compiler-
directed I/O prefetching and no-prefetch case, respectively,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

Fig. 1. I/O architecture.

when 8 clients are used. In addition, the experimental results
show that our schemes achieve consistent savings under the
different values of our major experimental parameters, and the
performance improvements achieved come very close to those
that can be obtained using a hypothetical optimal prefetching
scheme.

The rest of this paper is structured as follows. The next
section gives the descriptions of the I/O architecture consid-
ered in this work and of the baseline compiler-directed I/O
prefetching scheme. Sections III and IV present, respectively,
the experimental platform we used and the results collected
using I/O prefetching under the different client counts. Our
proposed prefetch throttling and data pinning schemes are ex-
plained and experimentally evaluated in Section V. Section VI
presents results from our sensitivity experiments, summarizes
several enhancements over our baseline implementation of
prefetch throttling and data pinning, and discusses possible
future directions. Section VII discusses related work, and
Section VIII concludes the paper by summarizing our main
contributions and future directions.

II. COMPILER-DIRECTED I/O PREFETCHING

Figure 1 depicts the architecture targeted by our work.
In this architecture, an I/O node is “shared” by multiple
clients (compute nodes) and contains a shared storage cache
that serves these clients. This shared cache presents, from a
performance perspective, opportunities (e.g., fast data sharing
across different clients through memory) as well as potential
drawbacks (e.g., destructive interferences among data streams
of different clients). Our focus in this work is on quantifying
the impact of I/O prefetching targeting this shared memory
cache and is to propose schemes to address the harmful
prefetch problem. While most of our experiments use a single
I/O node based configuration (with a single disk attached),
we also report results with multiple I/O node configurations,
each with its own storage cache shared possibly by a subset
of available clients (see our sensitivity experiments in Sec-
tion VI). In the rest of this paper, when no confusion occurs,
we use the terms “client”, “processor”, and “compute node”,
interchangeably.

While there exist several I/O prefetching algorithms pub-
lished in literature [27], [31], [25], [32], [18], [5], the one
used in this work is inspired by the work done by Mowry
et al [25]. The original algorithm has actually been proposed
for improving hardware cache behavior for memory-resident
data sets [26], and has later been extended to implement
I/O prefetching, targeting virtual memory based execution
environments. We adapted this algorithm to work with explicit
disk I/O. In [25], prefetches are inserted into the code based
on a data reuse analysis. More specifically, an optimizing
compiler analyzes the application code and identifies future
data elements that need to be brought to the memory cache.
It then inserts explicit prefetch instructions to bring such

int U1[N1×N2];
int U2[N1×N2];
int U3[N1×N2];
...
for i = 1 to N1 {

for j = 1 to N2 {
U1[i, j] = U2[i, j] + α*(U3[i, j]-2.0*U2[i, j] + U1[i, j]);
U2[i, j] = U3[i, j];

}
}

(a)

int U1[N1×N2];
int U2[N1×N2];
int U3[N1×N2];
...
for i = 1 to N1 {
prefetch (&U1[i][0], B); /* prolog */
prefetch (&U2[i][0], B);
prefetch (&U3[i][0], B);
for jj = 1 to N2−X, X { /* steady state */
prefetch (&U1[i][jj + B], B);
prefetch (&U2[i][jj + B], B);
prefetch (&U3[i][jj + B], B);
for j = jj to jj + X {

U1[i, j] = U2[i, j] + α*(U3[i, j]-2.0*U2[i, j] + U1[i, j]);
U2[i, j] = U3[i, j];

}
}
for j = N2−X to N2 { /* epilog */

U1[i, j] = U2[i, j] + α*(U3[i, j]-2.0*U2[i, j] + U1[i, j]);
U2[i, j] = U3[i, j];

}
}

(b)
Fig. 2. An example that illustrates compiler-directed I/O prefetching.
(a) Original code fragment. (b) Compiler-generated code with explicit I/O
prefetch calls inserted.

elements into the cache ahead of time to ensure that data is
in the cache when it is actually referenced.

Figure 2 illustrates an example application of this compiler-
directed I/O prefetching scheme. For the sake of illustration,
we omit the actual file I/O statements. In this example, three
disk-resident arrays (U1, U2, and U3) of the same size
(N1 × N2) are accessed by two statements in the innermost
loop body. Figure 2(a) shows the original loop (without any
I/O prefetching), and Figure 2(b) illustrates the compiler-
generated code after the I/O prefetch calls are embedded by
the compiler. In this example, B is assumed to be the unit
of I/O prefetching, i.e., when an I/O prefetch instruction with
argument B is called, it brings B data elements from the disk.
In a virtual memory based environment, this B parameter is
typically chosen such that it corresponds to the page size of
the underlying platform. Based on this unit of prefetch and
the I/O latency associated with it, expressed in terms of the
number of cycles, the number of iterations, X , ahead of which
data should be prefetched, can be given by:

X = �
Tp

s + Ti

�,

where X is the prefetch distance, Tp is the I/O latency to
prefetch B blocks, s is the number of iterations in the shortest
path through the loop body, and Ti is the overhead incurred by
a prefetch call inserted. Note that, in order to make prefetch
points explicit with respect to the specified block size (B),
a given loop nest may have to be decomposed into two loop

nests. As can be seen in Figure 2(b), the inner loop j, which is
selected for inserting prefetch instructions, is transformed into
two loops: the outer loop (the strip loop) and the inner loop
(the element loop). This particular transformation is called
strip-mining [35] and, in this example, we assume that the
outer loop has a strip size of X , as calculated above. As
a result of this, the jj loop iterates over individual data
blocks, whereas the j loop iterates over the elements within
a block. The prefetch instructions are inserted before starting
the innermost loop, thereby prefetching a data block before
operating on the data elements it contains. Following this,
the actual computation of the data elements in the block is
performed on the blocks prefetched previously. The epilog
iterations are executed by the last loop shown in the figure.

We now discuss the compiler analysis required for im-
plementing this I/O prefetching. First, the compiler analyzes
the given application code1 and predicts the future data
access patterns. This is done using data reuse analysis, a
technique developed originally for conventional cache locality
optimization [19]. This analysis identifies how a given data
element is accessed by different iterations and statements of
a loop nest, and captures the reuse distances (in terms of
loop iterations) of different data elements. Note that several
prefetching techniques have been proposed in literature to hide
the memory-to-cache latencies. These techniques typically try
to reduce the number of unnecessary prefetches due to data
elements that are already in the cache. This is also important in
the case of I/O prefetching as we do not want to prefetch a data
element that is already in the memory cache (e.g., for each data
block, we need to issue a prefetch request for only the first
element). In [25], misses are isolated through loop-splitting
and prefetches are scheduled using software pipelining based
on the data locality information generated by the compiler. In
their I/O prefetching algorithm, one of the key modifications
to the original algorithm (which targets memory-resident data
sets) is to limit the prefetches only across the outermost loop
nest. This follows from the fact that cache lines have relatively
small sizes when compared to a page (unit of prefetch in the
I/O prefetching algorithm of [25]), hence inner loop nests often
access less data than a page size. In deciding the loop splitting
point, the prefetching algorithm takes into account estimated
I/O latencies as well.

In our implementation of this I/O prefetching algorithm, we
have a layer in the file system that monitors the prefetch re-
quests and filters unnecessary prefetches as much as possible.
In this layer, a “bitmap” is maintained to capture the set of
data blocks that are already in the memory cache. Whenever
a prefetch is to be issued to the disk, the corresponding bit is
checked to see whether the block in question is already in the
memory cache, and if this is actually the case, that prefetch
is suppressed. In this way, a significant number of useless
prefetches can be eliminated.

We also want to emphasize that, while our experiments use
this particular I/O prefetching algorithm, its choice is really
orthogonal to the main focus of this paper. In other words,
as far as its applicability is concerned, our prefetch throttling
and data pinning schemes can be used along with any existing
I/O prefetching algorithm. Clearly, the savings achieved by

1In our case, this input code already contains explicit I/O (file read and file
write) calls. The compiler-directed prefetching algorithm augments this input
code with explicit prefetch calls.

our schemes are dependent on the underlying prefetching
algorithm used, and in fact, we believe our approach can bring
larger benefits when it is used along with simpler I/O prefetch-
ing algorithms (instead of a compiler-directed one). The reason
for this is that the algorithm in [25] inserts I/O prefetches very
carefully taking into account loop-specific I/O behavior and
estimated I/O latencies. As a result, it inserts very few useless
prefetches and most of such useless prefetches are filtered
before they are actually issued to the disk. Simpler schemes
on the other hand tend to insert more useless prefetches (some
of which will also be harmful prefetches), and we can expect
this to further increase the effectiveness of our throttling and
pinning schemes. In fact, our experiments with an alternate
(simpler) I/O prefetching scheme indicate that the proposed
schemes achieve significantly higher savings as compared to
those obtained with the compiler-directed prefetching scheme
(these results will be presented later in Section VI).

III. EXPERIMENTAL PLATFORM AND BENCHMARKS

In order to test the effectiveness of our proposed schemes
and conventional I/O prefetching, we performed experiments
with four applications that process disk resident data sets:
• mgrid: This application demonstrates the capabilities of

a simple multigrid solver in computing a three dimensional
potential field. The original application, which is part of both
the NAS [1] and SPEC [13] benchmark suites is re-coded, for
the purposes of this study, to perform explicit I/O from disk.
Data sets are made disk resident and additional optimizations
such as collective I/O [29] have been inserted to maximize the
I/O performance as much as possible. In this application, in
addition to echoing some of the inputs, the main part of the
output gives the smoothed approximate inverse. In a typical
run, the total size of the data manipulated by this application
is about 9.3GB.
• cholesky: This application implements the factorization

and solution of a dense system that stores its matrices on
disks. Our implementation closely follows the one discussed
in [12] and sub-portions of the main disk-resident matrix
are transferred to memory as needed. As in the case of
mgrid, the I/O behavior of the application has been carefully
optimized as much as possible using known techniques such
as collective I/O [29]. The total size of the data manipulated
by this benchmark is about 11.7GB in our single I/O node
configuration.
• neighbor m: This is a data mining algorithm that uses

a nearest neighbor method [20]. This method, by maintaining
a dataset of known records, finds records (neighbors) similar
to a target record and uses the neighbors for classification
and prediction. The particular application we have implements
market basket analysis, and the amount of data processed
is over 16GB in our default configuration. This application
heavily uses an I/O optimization called data sieving [30].
• med: This is an advanced image processing and mea-

surement software for MRI. It processes 3D images and re-
slices them along multiple axes. It also has a module which
combines multi-modality images to create image fusions. This
application uses both data sieving [30] and collective I/O [29].
In a typical run, the total disk resident data processed by this
application is around 14GB.

We made our experiments using PVFS, the Parallel Virtual
File System [4], which runs on top of a Linux cluster. PVFS
is a mainly user-level implementation, i.e., there is a library

20

25

30

35

40

ov
em

en
t

(%
)

1 Client

16 Clients

-10

-5

0

5

10

15

mgrid cholesky neighbor_m med

P
er

fo
rm

an
ce

 Im
pr

o

Fig. 3. Percentage improvements in total execution cycles due to I/O
prefetching (over the no-prefetch case). In each application, the bars from
left to right are for 1 through 16 clients.

(libpvfs) linked to application programs which provides a
set of interface routines (API) to distribute and retrieve data
to/from the disk system. In each I/O node designated, we
created a “global” memory cache which caches data that
belong to the disk(s) attached to that I/O node. This cache
is implemented as a user level process and shared by all
compute nodes (clients) that use that I/O node (it is also
possible to implement it within the Linux kernel). Since
multiple clients share the same memory cache, its efficient
utilization is clearly very critical. Since global caches have
already been studied in the context of PVFS and it is not one
of the contributions of this paper, we do not elaborate on our
global cache implementation any further in this paper, except
for saying that it closely follows the implementation presented
in [33]. Our global cache management method employs a LRU
(least-recently-used) policy with aging method to determine a
best candidate for replacement as a result of a cache miss.

We also implemented the compiler-directed I/O prefetching
algorithm explained in Section II targeting this global cache.
We used the SUIF compiler infrastructure [34] to modify the
input code for inserting explicit I/O prefetch calls. SUIF is
an optimizing compiler infrastructure that can be used as a
source-to-source translator. It consists of a small kernel and a
suite of compiler passes built on top of the kernel. The SUIF
kernel defines the intermediate representation, provides func-
tions to access and manipulate the intermediate representa-
tion, and structures the interface between successive compiler
passes. Our prefetch insertion algorithm is implemented as a
standalone phase within SUIF. We observed that the impact
of our prefetch implementation on compilation time was not
too much (less than 20% for the four applications used in this
work). Also, the code size increase due to added prefetch calls
was less than 18% for our applications. Considering the fact
that executable sizes for these codes are in hundred kilobyte
ranges, we believe that this increase in code size is not that
important (in fact, we noticed no increase in instruction cache
misses as a result of this increase in executable size).

The experimental results we present in this paper are
obtained using a Pentium/Linux based cluster of workstations.
Each node (which can be configured as I/O and/or compute
node) of this cluster has a 800 MHz Intel Pentium processor
with 32KB of L1 cache, 256KB of L2 cache, and 2GB
of physical main memory. In our default configuration, we
allocated 256MB of this memory as our default cache for I/O.
Note that, as stated earlier, our global cache is implemented
on multiple I/O nodes, though most of our results are collected

15

20

25

30

ul
 P

re
fe

tc
he

s
(%

)

1 Client 16 Clients

0

5

10

15

mgrid cholesky neighbor_m med

F
ra

ct
io

n
of

 H
ar

m
fu

Fig. 4. Fraction of harmful prefetches. In each application, the bars from
left to right are for 1 through 16 clients.

using a single I/O node. We also present results from a
sensitivity analysis that considers multiple I/O nodes, each
with its own global cache. Each I/O node is equipped with
a 20GB Maxtor hard disk drive and a network interface
card. All the nodes are connected through a Linksys Etherfast
10/100Mbps 16 port hub. Our default experimental platform
has several compute nodes (the number of which is varied
in our experiments) and one I/O node (which implements the
global cache). Unless stated otherwise, each compute node
(client) has also a client side cache of 64MB.

IV. EVALUATION OF COMPILER-DIRECTED I/O
PREFETCHING

Figure 3 presents the “percentage improvements in total
execution cycles” of our four data-intensive applications due
to I/O prefetching, under the different number of clients.
Specifically, each bar corresponds to the performance im-
provement brought by the prefetching scheme in [25] over
the no-prefetch case. An important observation from these
results is that the effectiveness of prefetching dramatically
diminishes as the number of clients to execute the application
code increases. For example, with mgrid, the improvement
brought by prefetching is about 36.6% when the single client
is used, whereas the same is only 2.3% with 16 clients. In
fact, I/O prefetching degrades overall performance in cholesky,
neighbor m, and med, when 15 or 16 clients are used, and
in the last two applications even with 13 or 14 clients. To
understand why this happens, we collected additional statistics
capturing the prefetch-related interactions among the clients.
Our first group of statistics are presented in Figure 4 and gives
the fraction of harmful prefetches. As stated earlier, we define
a “harmful prefetch” as a prefetch that leads to the removal of
a data block from the cache and the prefetched data block is
referenced only after the reference to the removed block. We
see from Figure 4 that, the contribution of harmful prefetches
increases with the increasing number of clients. This in a
sense can be expected, as more clients are used for executing
the application, higher the chances that clients will replace
each other’s data from the cache when they prefetch. We need
to mention however that harmful prefetches alone may not
be the only reason for the sharp degradation in performance
as we increase the number of clients. For example, we also
noticed during our experiments that the negative interactions
even among normal disk fetches to the memory cache tend
to increase with the large number of clients. Nevertheless,
the results presented in Figures 3 and 4 illustrate a strong
correlation between the degradation in the effectiveness of I/O

(a) (b) (c)

(d) (e) (f)

Fig. 5. Statistics collected at different points during the course of execution of our four applications. Each bar-chart shows a distribution of the harmful I/O
prefetches for the execution that uses 8 clients. (a) and (b) are from mgrid; (c) is from neighbor m; (d) and (e) are from cholesky; and (f) is from med. The
white bars indicate interesting patterns.

prefetching and the fraction of harmful I/O prefetches, which
deserves further investigation.

As stated earlier, harmful prefetches can be either “intra-
client” (when the prefetched data block replaces a block that
will be used by the prefetching client) or “inter-client” (when
the prefetched block replaces a data block that will be used
by another client). In the first case, the prefetch discards the
data used by the same client, whereas in the second case the
prefetching client and the client that makes reference to the
discarded data are different. Figure 5 shows some statistics
collected at different points during the course of execution
of our applications. Each bar-chart in this figure shows a
distribution of the harmful prefetches for an execution that
uses 8 clients (P0 through P7). In each bar-chart, “Prefetching
client” is the client that performs I/O prefetching and “Affected
client” is the client whose data got removed from the shared
cache as a result of this I/O prefetching (i.e., whose data is the
victim of a harmful prefetch). We want to emphasize that only
harmful prefetches are included in these graphs. To collect
these statistics, the application execution is divided into 100
“epochs,” and the bar-charts shown illustrate interesting and
representative patterns extracted from the collected statistics.
As the execution moves from one epoch to the next, we reset
the counters used to collect the statistics to capture the new
dynamic behavior.

Let us start by studying the graph in (a), which is captured
during one of the initial epochs of mgrid. We see that the most
of the harmful prefetches (more than 66%) are the ones issued
by the second client P2. The graph in (b), which represents an
epoch toward the middle of execution of the same application,
exhibits a different trend than the one in (a). In this case, two
clients (P2 and P6) are responsible for a large majority of
harmful prefetches (more than 85%). The third pattern – shown
in (c) – is taken from one of the last epochs of neighbor m, and

demonstrates an entirely different behavior than the previous
two. In particular, here we observe that one of the clients
(P5) is the victim of most of the harmful prefetches. The
next two bar-charts in Figure 5 are taken from cholesky and
capture two representative behaviors (one from the beginning
of the application execution and one towards the end). In
(d), we observe two interesting patterns. First, most of the
harmful prefetches are issued by one of the clients (P7), and
second, among all clients, P5 is the one that is affected most
by the harmful I/O prefetches. The graph in (e) indicates a
more clustered behavior. Specifically, there are a few clients
which perform harmful prefetches that affect another group
of clients. Also, there is another group of clients that are
affected greatly by harmful I/O prefetches. Finally, the last
bar-chart (f) is taken from the execution of med and shows
that two clients (P2 and P5) are affected from most of the
harmful prefetches. We need to mention at this point that
the patterns shown in Figure 5 are not isolated, infrequently-
occurring patterns. They in fact occur very frequently during
the course of execution. For example, the first 13 epochs in
the beginning of the execution of mgrid exhibit similar pattern
to the one shown in (a). Similarly, 8 consecutive patterns in
cholesky are very similar to the one given in (d), and med
has many patterns similar to that shown in (f). Therefore, if
one could take advantage of these patterns during execution,
significant performance gains can be achieved. In the rest of
this paper, we present two optimization schemes that exploit
these harmful prefetch patterns, and quantify the performance
benefits they bring in our applications.

V. OUR SCHEMES

A. Prefetch Throttling and Data Pinning

Based on the discussion in the previous section, we propose
two schemes for improving the behavior of I/O prefetching:

“prefetch throttling” and “data pinning.” In this section, we
explain the details of these two optimization schemes and
quantify the benefits they bring. Both these schemes are “his-
tory based,” that is, the execution of the application is divided
into epochs and the observations made during the execution
of the current epoch are used to optimize the behavior of the
next epoch.

In prefetch throttling, one or more clients (processors)
are (temporarily) prevented from issuing prefetch requests
to reduce the number of harmful prefetches. Note that this
optimization can be very useful in scenarios such as those
depicted in Figures 5(a) and (b). Specifically, we could im-
prove performance of I/O prefetching in the scenario depicted
in Figure 5(a) by throttling the I/O prefetches issued by P2,
and similarly, in Figure 5(b) by throttling the prefetches of
P2 and P6. To implement this scheme, we keep track of the
harmful prefetches issued by each client. Specifically, when a
data block is prefetched into the shared cache, we record the
block it discards, and then later check whether the prefetched
block or the discarded block is accessed first. If it is the
latter, we increase the counter (which counts the number of
harmful prefetches) attached to the prefetching client by one.
In addition to these client-local harmful prefetch counters, we
also keep track of the total number of harmful prefetches using
a global counter. At the end of each epoch, the contents of the
local counters and the global counter are used for calculating
the individual contribution of each client to the total number
of harmful prefetches. The clients whose contributions to
harmful prefetches are above a pre-set “threshold value” are
prevented from issuing further I/O prefetches in the next
epoch. In addition, the counters (including the global one)
are reset to 0 before the next epoch starts to ensure that
we capture the dynamic variations in the behavior of the
application. Our default threshold value – determined based on
some preliminary experiments we conducted – is 0.35 which
means that if, in epoch e, 35% of the prefetches issued by a
client are harmful prefetches, that client is prevented from I/O
prefetching in epoch e+1. In our default implementation, this
client is automatically enabled to perform I/O prefetches in
epoch e+2 (i.e., it resumes its normal prefetches) since it does
not perform any prefetches (harmful or not) in epoch e+1. The
pseudo-code that explains the operation of prefetch throttling
is given in Figure 6.

In data pinning, selected data blocks brought to the memory
cache by a client are marked as non-removable (i.e., pinned in
the cache) for a certain period of time. This helps those clients
which are affected from harmful prefetches significantly. Con-
sider for example the scenario illustrated in Figure 5(c). In
this scenario, client P5 suffers a lot from harmful prefetches,
and as a result, it can benefit significantly if its data could
be protected against harmful prefetches through pinning. Sim-
ilarly, in Figure 5(f), two clients (P2 and P5) are significantly
affected from harmful prefetches and can potentially benefit
from data pinning. We implement data pinning using a pre-
set “threshold value,” similar to the one used in the case of
throttling. This time, however, we keep track of – for each
client – the fraction of memory cache misses it incurs because
of harmful prefetches. This is done by employing a counter for
each client that records the number of cache misses it incurs
due to harmful prefetches and another counter which keeps
track of all misses (across all client) due to harmful prefetches.
When, for a given client, the fraction of misses due to harmful

for epoch e = 1 to E {
harmful-prefetches[e]=0;
for i = 1 to N (number of accesses) {

if (data-access[e][i] is a prefetch and
prefetch-allowed[i][e]=1) {

processor=data-access[e][i].proc;
accessed=data-access[e][i].accessed;
discarded=data-access[e][i].discarded;
if (discarded==accessed){

processor-prefetch-counter[processor]++;
harmful-prefetches[e]++;

}
}

}
for i=1 to P (number of processors) {

if (processor-prefetch-counter[i] ≥ T) {
prefetch-allowed[i][e+1]=0;

}
processor-prefetch-counter[i]=0;

}
}

Fig. 6. Sketch of our prefetch throttling scheme.

for epoch e = 1 to E {
harmful-prefetch-misses[e]=0;
for i = 1 to N (number of accesses) {

if (data-access[e][i] causes a miss) {
if (data-access[e][i] is a prefetch) {

processor=data-access[e][i].proc;
processor-miss-counter[processor]++;

}
misses[e]++;

}
}
for i = 1 to P (number of processors) {

if ((processor-miss-counter[i] / misses[e]) ≥ T) {
for all blocks b brought by i

pin[b][e+1]=1;
}

}
processor-miss-counter[i]=0;

}
}

Fig. 7. Sketch of our data pinning scheme.

prefetches exceeds the threshold value (which is 35% in our
experiments) in epoch e, the data blocks brought by that client
to the memory cache are pinned in the shared cache during the
entire epoch e+1. In this case, when a prefetch tries to kick out
a data block of this processor, another victim (from another
client) is selected, again based on the LRU policy. In other
words, the victim is the block that has not been brought into
the cache by that client and has the lowest LRU value among
all such blocks. As before, the counter values are reset to 0 at
the beginning of each epoch. Note also that the blocks brought
into the shared cache in epoch e+2 (by the client whose blocks
are pinned in epoch e+1) are not pinned. The pseudo-code
that explains the operation of our pinning approach is given
in Figure 7.

While both throttling and pinning bring certain overheads
such as updating counters and making comparisons at the end
of each epoch, we found that these overheads are not excessive
in practice, as compared to the large I/O latencies incurred
during disk read and writes. Also, some of these overheads
occur only at the epoch boundaries. Nevertheless, the results
presented in the rest of this paper include “all” the performance
overheads incurred by our two optimization schemes.

20

25

30

35

40

pr
ov

em
en

t
(%

)

1 Client

16 Clients

0

5

10

15

20

mgrid cholesky neighbor_m med

P
er

fo
rm

an
ce

 Im
p

Fig. 8. Percentage improvements in execution cycles when our two
optimization schemes are used with I/O prefetching (coarse grain version).

TABLE I
CONTRIBUTIONS OF OVERHEADS TO THE OVERALL APPLICATION

EXECUTION TIME. (I) REPRESENTS THE OVERHEADS INVOLVED IN
DETECTING HARMFUL PREFETCHES AND CACHE MISSES DUE TO THEM

AND UPDATING RELEVANT COUNTERS AND (II) REPRESENTS THE

OVERHEADS INVOLVED IN CALCULATING THE FRACTION OF HARMFUL

PREFETCHES AND MISSES FOR EACH CLIENT. THE RESULTS ARE GIVEN
FOR CLIENT COUNTS OF 2, 4, 8, AND 16.

Benchmark 2 4 8 16
i ii i ii i ii i ii

mgrid 2.20% 1.81% 3.44% 2.76% 4.16% 3.55% 4.96% 3.97%
cholesky 1.88% 1.26% 2.62% 1.73% 3.27% 2.58% 4.72% 3.36%
neighbor m 1.97% 1.53% 1.87% 2.08% 3.66% 3.27% 4.14% 3.46%
med 2.13% 1.90% 3.57% 2.92% 3.81% 3.29% 4.73% 3.77%

B. Results

The performance improvements brought by I/O prefetching
supported by our throttling and pinning schemes (over the no-
prefetch case) are presented in Figure 8 under the different
client counts. Comparing this graph with that in Figure 3, we
see that our approach improves performance significantly. For
example, when 8 clients are used, the percentage improve-
ments brought by our approach over the no-prefetch case
are 19.6%, 16.7%, 10.4% and 13.3% for mgrid, cholesky,
neighbor m, and med, respectively. Note that these results are
much better than the corresponding improvements achieved
by the straightforward I/O prefetching scheme, which are
14.5%, 13.7%, 4.3% and 6.1%, respectively. Table I gives
the contributions of the overheads (incurred by our schemes)
to the overall application execution time. As stated above,
the results presented in this paper include all the overheads
incurred by our optimization schemes. Basically, there are
two major sources of overhead in our schemes: (i) detecting
harmful prefetches and cache misses due to them and updating
relevant counters (which is performed at every cache miss and
prefetch) and (ii) calculating the fraction of harmful prefetches
and misses of each client (which is performed at the end
of every epoch). Our observation from Table I is that the
total contribution of these overheads to the overall execution
latency is less than 9% for our benchmarks. We also see that
contribution of (i) is larger than (ii), mainly because the former
takes place much more frequently than the latter.

Before moving to the explanation and evaluation of the fine
grain version of our approach, we present the breakdown of the
performance benefits brought by our approach. In Figure 9(a),
each bar represents the total performance benefits brought by
prefetch throttling and data pinning, and is set to 100. The

lower portion of a bar gives the percentage benefits brought by
prefetch throttling alone, while the upper portion captures the
performance benefits obtained through data pinning alone. We
see that, while prefetch throttling is in general (but not always)
more beneficial than data pinning, the relative contribution of
pinning increases as we increase the number of clients. This
is because, for a given data block, the chances for it to get
displaced as a result of prefetching increases as we increase
the number of clients.

C. Fine-Grain Optimization

The optimizations explained thus far in this section can
be considered “coarse grain” as they keep track of harmful
prefetches and misses due to them from the individual client’s
perspective rather than in a client-pair centric manner. In other
words, if the prefetches of a client are throttled, some useful
prefetches issued by that client will also be throttled, and this
can affect performance negatively. Similarly, when data blocks
of a client are pinned, they are pinned against all prefetches
from all clients. Some of these prefetches may in fact be
useful (i.e., have nothing to do with the protected blocks)
and can improve performance if enabled. In this section, we
evaluate a “fine grain” version of our approach. In this version,
which is oriented to address the problems associated with
the coarse grain version explained above, we keep track of
harmful prefetches and misses due to harmful prefetches for
each client pair. In a sense, we try to capture – at runtime –
the information represented in bar-charts of the type shown
in Figure 5. Note that this level of information can allow
us to perform detailed optimizations which could not be
possible under the coarse grain implementation. For example,
by keeping harmful prefetch and cache miss information at a
client pair granularity, we can throttle I/O prefetches from a
client only if such prefetches will discard the data of a certain
other client or set of clients, and let the remaining prefetches
it issues go through. In other words, it can be possible to
tune the behavior of each client – as far as I/O prefetching is
concerned – with respect to the behavior of every other client
individually.

To make this point clear, let us consider the bar-chart in
Figure 5(e). Unlike the graphs given in Figures 5(a) through
(d) and (f), we observe a “clustered-behavior” in this graph.
For example, we can see that the prefetches performed by
clients P0, P1 and P2 most affect the data of clients P1, P2
and P3. Similarly, prefetches carried out by P3 and P4 displace
from the cache mostly the data required by P4, P6 and P7.
By taking into account this finer grain pattern of harmful
prefetches, one can potentially do a much better job than the
coarse grain version evaluated so far. For example, instead of
throttling all prefetches from client P0, one can throttle only
the ones that will displace data of clients P1, P2 or P3. A
similar fine grain approach can be used for pinning as well.
As an example, instead of pinning the data blocks of client P3
against all prefetches, we can pin them only against prefetches
from clients P0, P1 and P2.

Implementing this finer grain version of our approach
requires us maintain more counters during execution. As
an example, for a system with p clients, we need p2 + 1

counters for keeping track of the harmful prefetches at a client
pair granularity to implement the finer grain version of our
throttling scheme. p2 of these counters are for the client pairs,
and the last one is a global counter that keeps track of all

(a) (b)

Fig. 9. Breakdown of the percentage benefits brought by our schemes. (a) coarse grain
optimization. (b) fine grain optimization. The results are given for client counts of 2, 4, 8 and
16 (on the x-axis).

20

25

30

35

40

pr
ov

em
en

t
(%

)

1 Client

16 Clients

0

5

10

15

20

mgrid cholesky neighbor_m med

P
er

fo
rm

an
ce

 Im
p

Fig. 10. Percentage improvements in execution
cycles when our two optimization schemes are
used with I/O prefetching (fine grain version).

harmful prefetches. A similar number of counters are also
needed for implementing the fine grain version of our data
pinning scheme. However, we noticed during our experiments
that the total performance overhead brought by maintaining
these counters and making throttling/pinning decisions was
below 12% for our applications (which is slightly larger
than the 9% overhead incurred when using the coarse grain
version). As in the case of the coarse grain version, this fine
grain version also needs to use threshold values to decide
when the interaction between two clients is harmful enough.
In prefetch throttling, when the fraction of (total) harmful
prefetches issued by client Pk and affect client Pl exceeds
a certain pre-set threshold value, the prefetches of Pk (in the
next epoch) that are designated to displace a block of Pl are
throttled. Similarly, in deciding to pin certain blocks of client
Pk against prefetches issued by client Pl, we use a threshold
value. In our default implementation of the fine grain version,
both these threshold values are set to 20% based on some
preliminary experiments. Later, we also present experimental
results with different threshold values.

The results (percentage improvements in application exe-
cution times over the no-prefetch case) with this fine grain
version of our approach are presented in Figure 10. When we
compare these results with the corresponding ones obtained
using the coarse grain version (presented in Figure 8), we
see significant improvements. For example, when using 8
clients the savings with the fine grain version are about 34.6%
and 25.9% for mgrid and cholesky respectively, which are
much better than the corresponding numbers obtained through
the coarse grain version (19.6% for mgrid and 16.8% for
cholesky). Figure 9(b) presents the contributions of throttling
and pinning in this fine grain version. As in the case of the
coarse grain version, we see that both throttling and pinning
contribute to the performance savings achieved.

VI. DISCUSSION

In this section, we first change the default values of some
of our major simulation parameters and conduct a sensitivity
analysis. We then evaluate the influence of our schemes when
they are used with a simpler (runtime behavior based) I/O
prefetching scheme, instead of the sophisticated compiler-
based prefetching used in our experiments so far. After that, we
briefly discuss and evaluate a variant of our approach that takes
into account stable behavior (patterns), from the perspective
of harmful prefetch patterns, of consecutive epochs during
execution. Then, we present the scalability of the proposed

approach and how it performs under multiple application
scenario. After giving a comparison to our approach to an
optimal scheme, we discuss future directions.

Sensitivity to Default Parameters. Recall that our ex-
periments so far used only one I/O node with cache size
of 256MB. We also performed experiments that measure the
sensitivity of our approach to the number of I/O nodes while
the total cache size is kept at 256MB. As mentioned earlier,
when multiple I/O nodes are used, we associate a separate
global memory cache (of the same size) with each I/O node.
The results are presented in Figure 11 with 2, 4, and 8 I/O
nodes. The figure presents the results for only 8 and 16 client
cases with the fine grain version. As expected the percentage
savings brought by our approach get reduced when the number
of I/O nodes is increased. This is because, with a larger
number of I/O nodes, the prefetch requests are spread and
this tends to reduce the number of harmful prefetches. Since
the results in Figure 11 are with respect to the case without
our optimizations, we observe a drop in percentage savings.
Still, even with the largest number of I/O nodes tested, the
performance improvements we achieve are not bad.

Our next set of experiments measure the performance ben-
efits brought by our approach when the buffer (shared cache)
size in an I/O node is varied. Recall that the total shared cache
size used in our experiments so far is 256MB, which is the
memory space allocated for buffer cache within a single I/O
node. Figure 12 shows the results with cache sizes of 128MB,
256MB, 512MB, 1GB, and 2GB when the fine-grain version is
applied (single I/O node). As stated in Section III, the default
cache space allocated within a single I/O node is 256MB and
we changed it to different cache sizes. Our observation is that,
while our savings get reduced with larger buffer sizes, we still
achieve significant performance improvements. For instance,
for the 16 client case with a 1GB shared cache space, the
average performance improvement when all four applications
are considered is about 9.5%. These results also indicate that
we can expect our approach to be even more effective as
the data sizes manipulated by I/O-intensive applications keep
increasing.

Figure 13 gives the performance improvements achieved
by the fine grain version of our scheme in more detail for
the case with 2GB buffer size. As in Figure 12, we used a
single I/O node, which is configured with 2GB buffer cache.
We observe that, for all client counts tested, our approach
generates reasonable savings (even with this large buffer
capacity). Overall, when we consider the results given in

Fig. 11. Percentage savings with the I/O node
counts of 1, 2, 4, and 8 (on the x-axis). Results
are given for the 8 and 16 client cases under the
fine grain version.

Fig. 12. Percentage savings with the different
buffer sizes (on the x-axis). Results are given for
the 8 and 16 client cases under the fine grain
version.

15

20

25

30

m
pr

ov
em

en
t

(%
)

1 Client

16 Clients

0

5

10

15

mgrid cholesky neighbor_m med

P
er

fo
rm

an
ce

 Im

Fig. 13. Percentage improvements with 2GB
buffer size.

Fig. 14. Percentage savings when the number of
epochs (on the x-axis) is varied.

Fig. 15. Percentage savings with the different
threshold values (the x-axis).

Fig. 16. Percentage performance improvements
when the client-side cache capacity is changed (on
the x-axis).

Figures 11, 12, and 13 together, we can conclude that our
approach is robust under different number of I/O nodes and
varying cache sizes.

Recall that the number of epochs used for both applications
was 100. To evaluate the impact of a different epoch count,
we conducted another set of experiments where the number of
epochs is changed. Note that, the experiments are performed
using a single I/O node with the default cache size, 256MB.
The results are presented in Figure 14. We see that an epoch
count of 100 generates the best result among all other counts
tested in the experiments. When the numbers of epochs is very
small (i.e., when the epochs are very large), we cannot capture
the fine grain modulations in harmful prefetch patterns during
execution. At the other extreme, when the number of epochs
is very small, the overheads involved become too much. While
we believe that it is possible to develop an enhanced scheme
that adapts the epoch size to the runtime behavior of the
application, we postpone this study to a future work.

As mentioned earlier, the default threshold values used
in the coarse grain and fine grain versions of our schemes
were 35% for both throttling and pinning. We also performed
experiments with other threshold values, and the results are
presented in Figure 15 for the coarse grain version (the
trends with the finer grain version are very similar; so, we
do not present them). Again, the results are obtained using
a single I/O node with 256MB cache size. We see that, as
expected, the percentage savings are significantly effected by
the threshold value employed. A very low threshold value can
invoke frequent throttles and pinnings, and this can in turn lead
to poor performance. On the other hand, a very large threshold

value can cut the number of (potentially useful) throttles and
pinnings significantly, leading again to poor performance. As
in the case of the number of epochs, it may be possible to
develop a runtime strategy which can modulate the threshold
value dynamically during the course of execution. However,
detailed investigation of such a scheme is beyond the scope
of this paper.

The default client-side cache capacity used in our experi-
ments was 64MB. We also performed a sensitivity experiment
to see how the size of client cache affects the performance
savings our scheme achieves. The results for different sizes
are presented in Figure 16 (the values of other parameters
are as in their default configuration). We can see that, while
the savings we achieve generally reduce as we increase the
capacity of the client-side cache, the results are still good. In
particular, even with the largest client cache we used, our fine
grain scheme achieves about 14.6% average improvement in
execution latency with 8 clients and 9.1% improvement with
16 clients.

Comparison with Simple Prefetching. We now present
the results obtained when a simpler I/O prefetching algorithm
is used. Recall that the prefetching approach used so far in
our experimental evaluation is a compiler based one [25].
As explained earlier in Section II, this algorithm makes use
of data reuse analysis to identify the data blocks for which
to issue prefetches and most suitable points in the code to
insert explicit prefetch instructions. As a result, it is careful
in inserting prefetches and this helps minimize the number of
unnecessary or useless prefetches. Consequently, this approach
also help us cut the number of harmful I/O prefetches. To

25

30

35

40

45
m

pr
ov

em
en

t
(%

)

1 Client

16 Clients

0

5

10

15

20

mgrid cholesky neighbor_m med

P
er

fo
rm

an
ce

 Im

Fig. 17. Results obtained when a simpler I/O
prefetching algorithm is used (fine grain version).

Fig. 18. Percentage savings when the value of
the K parameter is changed (on the x-axis).

Fig. 19. Percentage savings when the number of
clients is increased (on the x-axis).

quantify the effectiveness of our approach under a different
I/O prefetch scheme, we also implemented a simpler I/O
prefetching scheme whereby whenever a data block is fetched
(not through prefetching) from disk to memory cache, the next
block on the same disk is prefetched automatically. Clearly, as
compared to the compiler based scheme, this simpler scheme
can issue many more prefetches (which means more harmful
prefetches as well). The results with this scheme when used
along with the fine grain version of our approach are shown
in Figure 17 for the single I/O node case. When we compare
these results to those given in Figure 10, it is easy to see
that our approach generates better savings with the simple
I/O prefetch scheme for all the client counts tested. The main
reason for this is the fact that, as the number of prefetches
increases, the percentage of harmful prefetches also increases.
For example, although we do not present here in detail, for
the 8 client case, when we move from the compiler based
prefetching scheme to this simpler scheme, we observed that
the percentage of harmful prefetches increased by 34.4%,
25.5%, 15.9%, and 21.4%, in applications mgrid, cholesky,
neighbor m, and med, respectively. Since prefetch throttling
and data pinning targets harmful prefetches, their effectiveness
increases with the simple scheme.

Extended Epochs. As explained earlier in detail, when
our approach decides to enable, during epoch e, prefetch
throttling and data pinning for epoch e+1, in the next epoch
(e+2), throttling and data pinning are disabled for the involved
clients. However, this can potentially lead to missing some
optimization opportunities. In particular, epoch e+2 (and the
next several epochs that follow it) could also benefit from
the throttling and pinning decisions taken for epoch e+1. In
other words, the same harmful prefetch pattern can last more
than two consecutive epochs, and we could achieve additional
performance improvements if we could take advantage of this.
To test this, we performed another set of experiments where
the throttling and pinning decisions taken during epoch e are
applied to epochs e+1 through e+K (inclusive), where K is a
parameter that can be changed. Note that in our experiments
discussed up to this point K is set to 1. For 8 and 16 client
cases under the fine grain version of our approach, Figure 18
gives the percentage savings when the value of K is changed
from 1 to 5. Our main observation from these results is that,
as the value of K is increased, the percentage improvements
first increase, and then beyond a point, they start to decrease.
This means that a typical harmful prefetch pattern lasts 2-3
consecutive epochs but does not go beyond that (in general).
Therefore, setting the value of K to 3 seems to be the right

Fig. 20. Percentage improvements for mgrid when executed with multiple
applications.

choice (we reached the same conclusion with the other client
counts and our coarse grain version as well).

Scalability and Multiple Applications. Another aspect to
explore is the scalability of our approach. To test how our
savings look like when the number of clients is increased,
we performed experiments with 32 and 64 clients. The results
are presented in Figure 19; the results with 16 nodes are also
reproduced for ease of comparison. We see that, while the
savings are reduced as we increase the number of clients, we
still achieve more than 5% improvement in all cases tested.
The main reason for not achieving better saving figures is the
(relatively) small data set sizes our applications use.

In our experiments so far, we assumed that an I/O node
is not shared by multiple applications. When an I/O node is
shared, our approach is still applicable as it is client-based,
that is, it does not matter from an operational viewpoint
whether the threads that are running on clients involved a
harmful prefetch belong to the same application or different
applications. However, in the case different applications, one
can expect more irregularity in (Prefetching client, Affected
client) plots shown earlier (see Figure 5). Figure 20 presents
the percentage improvements for mgrid when its running
alone, with one additional application, with two additional
applications, and with three additional applications. We see
that our approach performs very well under the multiple
application scenario as well. The savings achieved are not as
good as the case when no I/O node is shared. This is due to,
as stated above, the fact that harmful prefetching patterns are
more irregular when multiple applications are involved.

Comparison to Optimal Scheme. In this part of our ex-
perimental analysis, we compare our savings to those obtained
by a hypothetical optimal scheme which assumes perfect

Fig. 21. Comparison with the optimal scheme.

knowledge about future data access patterns. The results with
this scheme, given in Figure 21, are obtained using traces from
our applications. This hypothetical scheme eliminates harmful
prefetches in an optimal fashion. That is, for each prefetch,
it determines whether it will be harmful or not, and if it will
be harmful, that prefetch is dropped. For ease of comparison,
Figure 21 also reproduces the results with our scheme (the fine
grain version). We can see from these results that the difference
between our scheme and the optimal one is not too much in
these applications (the average difference being 3.6%).

VII. RELATED WORK

The replacement algorithm for I/O caching has a significant
influence on I/O performance. While the LRU (Least Recently
Used) replacement policy, which dates back at least to 1965
[8], has been widely used to manage buffer caches, there
are various approximations and enhancements to this, for
example, the classical CLOCK algorithm [7]. While variants
of the CLOCK algorithm are still dominant in many imple-
mentations, they also have some limitations in adaptability
as far as changing access patterns is concerned. To mitigate
this problem, several researchers studied enhancements to the
classical CLOCK algorithm, such as 2Q [17] and LRFU [21].
More recent studies that try to handle accesses with weak
temporal or spatial locality include CAR (Clock with Adaptive
Replacement) [2], LIRS (Low Inter-reference Recency Set)
[16], ARC (Adaptive Replacement Cache) [24], CLOCK-
Pro [14], Second-Tier Cache Management [23], MultiQueue
[38], and DULO (DUal LOcality) [15]. In some I/O-intensive
applications where data access patterns are predictable, more
efficient buffer cache management can be achieved by bal-
ancing caching against aggressive prefetching using the ex-
tracted future access patterns. Patterson et al [27] used a hint
mechanism, which is designed to expose access patterns to
the runtime system, in managing prefetching and caching file
cache blocks.

I/O prefetching is also a very effective way of improving
I/O performance. The basic idea is to hide I/O stall time
by issuing I/O commands ahead of the time when they are
actually needed. Since prefetched blocks can pollute the cache
for normal cached blocks, prefetching should be designed
and implemented carefully. Mowry et al [25] used compiler-
generated information to manage prefetch commands more
effectively in the context of single CPU execution. They
also studied the cases where processes running concurrently
on the same CPU generate I/O prefetch commands simulta-
neously [3]. To handle the interaction among multiple I/O
prefetch instructions coming from multiple processes, they

also introduced a release command in addition to compiler-
inserted prefetch command [3]. Li and Shen [22] proposed
a memory management framework that handles non-accessed
but prefetched pages separately from the rest of the memory
buffer cache. They employ different heuristic policies to select
a victim page. They either evict the last page of the longest
prefetch stream, or the last page of the least recently accessed
prefetch stream, or evict the last page of the prefetch stream
whose owner process has consumed the most amount of CPU
since it last accessed the prefetch stream. For sequential work-
loads, Gill and Modha proposed a novel prefetching scheme,
called SARC [11], that dynamically adapts the cache space
between sequential and random streams. In TIP (Transparent
Informed Prefetching) [27], “prefetch horizon” is used to limit
the prefetch depth, beyond which there is no benefit from
prefetching. While prefetch horizon can mitigate the impact of
aggressive prefetching on effective cache size, this approach
does not specifically target harmful prefetches. Patterson et al
also studied the same problem under multi-process execution
environments [31]. Kimbrel et al [28] studied the prefetching
and caching in a system with parallel disks. More recently,
Ding et al proposed a scheme, called DiskSeen [9], that
improves I/O prefetching by exploiting disk layout and access
patterns observed to overcome the inherent limitations of
prefetching at the logical file level. Our approach described in
this paper is different from these prior studies that considered
I/O prefetching, since our main goal is to eliminate harmful
prefetches that lead to intra- and inter-client misses on the
shared storage caches. Gill and Bathen [10] also addressed
a similar problem as ours does using a technique, called
AMP, that determines the prefetching trigger point and the
prefetching degree adaptively. Our approach is different from
AMP because we evaluated the effect of harmful prefetches
generated by applications running on multiple clients, whereas
AMP’s goal is to reduce harmful prefetches based on work-
load intensity and storage system load. Also, while AMP
studied prefetching for commercial workloads, our focus is
on compiler-directed I/O prefetching in parallel applications.
Therefore, the approaches used in our work and [10] are
entirely different from each other.

Targeting multi-level caches, several multi-level buffer
cache management policies have been proposed [6], [36], [33],
[37]. The main idea behind these approaches is to manage
cache blocks in an exclusive manner, that is, a file cache block
in one level of cache hierarchy does not present in another
level of caches. To handle this, [36] introduced a DEMOTE
operation where an evicted cache block is migrated to lower
level of buffer cache. Chen et al [6] used eviction history
observed in a higher level cache in determining cache blocks
that need to be replaced in a lower level. Lastly, Yadgar et al
[37] proposed an approach, called Karma, that uses application
hints in managing the contents of a multi-level cache hierarchy.

VIII. CONCLUSIONS AND FUTURE WORK

I/O prefetching is an important optimization that can po-
tentially improve the performance of large scale data-intensive
applications that perform disk I/O. The main contribution of
this paper is to show that harmful prefetches can be very
problematic for shared memory caches and to propose two
complementary schemes that help reduce the negative impact
of these prefetches. Prefetch throttling prevents one or more
clients from issuing further prefetches if such prefetches are

predicted to be harmful, i.e., discard the useful data accessed
by other clients. Data pinning on the other hand makes selected
data blocks immune to harmful prefetches by pinning them
in the memory cache. This paper discusses both coarse grain
and fine grain versions of these two optimization schemes
and present a detailed experimental analysis. Our results
demonstrate that the proposed prefetch throttling and data
pinning schemes improve the performance of I/O prefetching
significantly for the four application codes tested. Specifically,
with the default values of our experimental parameters, our
schemes reduce execution cycles by 15.1% over the no-
prefetch case and 9.7% over the standard compiler-guided I/O
prefetching, when 8 clients are used. The results also show that
our savings are very close to those achieved by a hypothetical
optimal scheme.

This work is a step toward adapting the behavior of I/O
prefetching at runtime to improve performance. In our future
work, we would like to extend our proposed system to more
adaptive to different classes of applications, cache sizes,
concurrently-executing multiple applications, etc.

ACKNOWLEDGMENT

We would like to thank our shepherd, Xiaosong Ma, for
her useful feedback, and the anonymous reviewers for their
insightful comments. This work is supported in part by NSF
grants #0406340, #0444158, #0621402, #0724599, #0821527,
and #0833126.

REFERENCES

[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
The NAS Parallel Benchmarks, Summary and Preliminary Results. In
Proceedings of the ACM/IEEE Conference on Supercomputing, pages
158–165, 1991.

[2] S. Bansal and D. S. Modha. CAR: Clock with Adaptive Replacement.
In Proceedings of the USENIX Conference on File and Storage Tech-
nologies, pages 187–200, 2004.

[3] A. D. Brown and T. C. Mowry. Taming the Memory Hogs: Using
Compiler-Inserted Releases to Manage Physical Memory Intelligently.
In Proceedings of the Symposium on Operating System Design &
Implementation, pages 31–44, 2000.

[4] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur. PVFS: A Parallel
File System for Linux Clusters. In Proceedings of the Annual Linux
Showcase and Conference, pages 317–327, 2000.

[5] C.-L. Chee, H. Lu, H. Tang, and C. V. Ramamoorthy. Improving I/O
Response Times via Prefetching and Storage System Reorganization. In
Proceedings of the International Computer Software and Applications
Conference, pages 143–148, 1997.

[6] Z. Chen, Y. Zhou, and K. Li. Eviction-based Cache Placement for
Storage Caches. In Proceedings of the USENIX Annual Technical
Conference, pages 269–281, 2003.

[7] F. J. Corbato. A Paging Experiment with the Multics System, 1969.
[8] P. J. Denning. Working Sets Past and Present. IEEE Trans. Software

Eng., 6(1):64–84, 1980.
[9] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. DiskSeen:

Exploiting Disk Layout and Access History to Enhance I/O Prefetch. In
Proceedings of the USENIX Annual Technical Conference, pages 261–
274, 2007.

[10] B. S. Gill and L. A. D. Bathen. AMP: Adaptive Multi-stream Prefetching
in a Shared Cache. In Proceedings of the 5th USENIX Conference on
File and Storage Technologies, pages 185–198, 2007.

[11] B. S. Gill and D. S. Modha. SARC: Sequential Prefetching in Adaptive
Replacement Cache. In Proceedings of the USENIX Annual Technical
Conference, pages 293–308, 2005.

[12] B. C. Gunter, W. C. Reiley, and R. A. V. D. Geijn. Parallel Out-of-core
Cholesky and QR Factorizations with Pooclapack. In Proceedings of
the International Parallel and Distributed Processing Symposium, pages
1885–1894, 2001.

[13] J. L. Henning. SPEC CPU2000: Measuring CPU Performance in the
New Millennium. Computer, 33(7):28–35, 2000.

[14] S. Jiang, F. Chen, and X. Zhang. CLOCK-Pro: an effective improvement
of the CLOCK replacement. In Proceedings of the USENIX Annual
Technical Conference, pages 35–35, 2005.

[15] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. DULO: An
Effective Buffer Cache Management Scheme to Exploit Both Temporal
and Spatial Localities. In Proceedings of the USENIX Conference on
File and Storage Technologies, 2005.

[16] S. Jiang and X. Zhang. LIRS: An Efficient Low Inter-Reference Recency
Set Replacement Policy to Improve Buffer Cache Performance. In Pro-
ceedings of the SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pages 31–42, 2002.

[17] T. Johnson and D. Shasha. 2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm. In Proceedings of the
International Conference on Very Large Data Bases, pages 439–450,
1994.

[18] M. Kallahalla and P. J. Varman. Optimal Prefetching and Caching for
Parallel I/O Sytems. In Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, pages 219–228, 2001.

[19] M. S. Lam and M. E. Wolf. A Data Locality Optimizing Algorithm.
SIGPLAN Not., 39(4):442–459, 2004.

[20] D. T. Larose. Data Mining Methods and Models. John Wiley & Sons,
2006.

[21] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. On the Existence of a Spectrum of Policies that Subsumes the
Least Recently Used (LRU) and Least Frequently Used (LFU) Policies.
In Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 134–143, 1999.

[22] C. Li and K. Shen. Managing Prefetch Memory for Data-Intensive
Online Servers. In Proceedings of the USENIX Conference on File and
Storage Technologies, 2005.

[23] X. Li, A. Aboulnaga, K. Salem, A. Sachedina, and S. Gao. Second-Tier
Cache Management Using Write Hints. In Proceedings of the USENIX
Conference on File and Storage Technologies, 2005.

[24] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low Overhead
Replacement Cache. In Proceedings of the USENIX Conference on File
and Storage Technologies, pages 115–130, 2003.

[25] T. C. Mowry, A. K. Demke, and O. Krieger. Automatic Compiler-
Inserted I/O Prefetching for Out-of-Core Applications. In Proceedings
of the Symposium on Operating Systems Design and Implementation,
pages 3–17, 1996.

[26] T. C. Mowry, M. S. Lam, and A. Gupta. Design and Evaluation of a
Compiler Algorithm for Prefetching. SIGPLAN Not., 27(9):62–73, 1992.

[27] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Ze-
lenka. Informed Prefetching and Caching. In Proceedings of the ACM
Symposium on Operating Systems Principles, pages 79–95, 1995.

[28] T. Kimbrel et al. A Trace-Driven Comparison of Algorithms for Parallel
Prefetching and Caching. In OSDI, pages 19–34, 1996.

[29] R. Thakur and A. Choudhary. An Extended Two-Phase Method for
Accessing Sections of Out-of-Core Arrays. In Scientific Programming,
pages 301–317, 1996.

[30] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O in
ROMIO. In Proceedings of the Symposium on the Frontiers of Massively
Parallel Computation, pages 182–189, 1999.

[31] A. Tomkins, R. H. Patterson, and G. Gibson. Informed Multi-Process
Prefetching and Caching. In Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, pages 100–114, 1997.

[32] N. Tran and D. A. Reed. Automatic ARIMA Time Series Modeling for
Adaptive I/O Prefetching. IEEE Trans. Parallel Distrib. Syst., 15(4):362–
377, 2004.

[33] M. Vilayannur, A. Sivasubramaniam, M. T. Kandemir, R. Thakur, and
R. B. Ross. Discretionary Caching for I/O on Clusters. In IEEE
International Symposium on Cluster Computing and the Grid, pages
96–103, 2003.

[34] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.
Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S.
Lam, and J. L. Hennessy. SUIF: An Infrastructure for Research on
Parallelizing and Optimizing Compilers. SIGPLAN Not., 29(12):31–37,
1994.

[35] M. J. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[36] T. M. Wong and J. Wilkes. My Cache or Yours? Making Storage More
Exclusive. In Proceedings of the USENIX Annual Technical Conference,
pages 161–175, 2002.

[37] G. Yadgar, M. Factor, and A. Schuster. Karma: Know-it-All Replace-
ment for a Multilevel Cache. In Proceedings of the USENIX Conference
on File and Storage Technologies, pages 25–25, 2007.

[38] Y. Zhou, J. Philbin, and K. Li. The Multi-Queue Replacement Algorithm
for Second Level Buffer Caches. In Proceedings of the USENIX Annual
Technical Conference, pages 91–104, 2001.

