3 research outputs found

    Color Filter Array Image Analysis for Joint Denoising and Demosaicking

    Get PDF
    Noise is among the worst artifacts that affect the perceptual quality of the output from a digital camera. While cost-effective and popular, single-sensor solutions to camera architectures are not adept at noise suppression. In this scheme, data are typically obtained via a spatial subsampling procedure implemented as a color filter array (CFA), a physical construction whereby each pixel location measures the intensity of the light corresponding to only a single color. Aside from undersampling, observations made under noisy conditions typically deteriorate the estimates of the full-color image in the reconstruction process commonly referred to as demosaicking or CFA interpolation in the literature. A typical CFA scheme involves the canonical color triples (i.e., red, green, blue), and the most prevalent arrangement is called Bayer pattern. As the general trend of increased image resolution continues due to prevalence of multimedia, the importance of interpolation is de-emphasized while the concerns for computational efficiency, noise, and color fidelity play an increasingly prominent role in the decision making of a digital camera architect. For instance, the interpolation artifacts become less noticeable as the size of the pixel shrinks with respect to the image features, while the decreased dimensionality of the pixel sensors on the complementary metal oxide semiconductor (CMOS) and charge coupled device (CCD) sensors make the pixels more susceptible to noise. Photon-limited influences are also evident in low-light photography, ranging from a specialty camera for precision measurement to indoor consumer photography. Sensor data, which can be interpreted as subsampled or incomplete image data, undergo a series of image processing procedures in order to produce a digital photograph. However, these same steps may amplify noise introduced during image acquisition. Specifically, the demosaicking step is a major source of conflict between the image processing pipeline and image sensor noise characterization because the interpolation methods give high priority to preserving the sharpness of edges and textures. In the presence of noise, noise patterns may form false edge structures; therefore, the distortions at the output are typically correlated with the signal in a complicated manner that makes noise modelling mathematically intractable. Thus, it is natural to conceive of a rigorous tradeoff between demosaicking and image denoising

    High performance high quality image demosaicing hardware designs

    Get PDF
    Since capturing three color channels (red, green, and blue) per pixel increases the cost of digital cameras, most digital cameras capture only one color channel per pixel using a single image sensor. The images pass through a color filter array before being captured by the image sensor. Demosaicing is the process of reconstructing the missing color channels of the pixels in the color filtered image using their available neighboring pixels. There are many image demosaicing algorithms with varying reconstructed image quality and computational complexity. In this thesis, high performance hardware architectures are designed for two high quality image demosaicing algorithms with high computational complexity. The proposed hardware architectures are implemented on an FPGA. A high performance Alternating Projections (AP) image demosaicing hardware is proposed. This is the first AP image demosaicing hardware in the literature. A high performance Enhanced Effective Color Interpolation (EECI) image demosaicing hardware is proposed. This is the first EECI image demosaicing hardware in the literature. The proposed hardware architectures are implemented using Verilog HDL. The Verilog RTL codes are mapped to a Xilinx Virtex 6 FPGA. The proposed FPGA implementations are verified with post place & route simulations. They can process 31 and 94 full HD (1920x1080) images per second, respectively

    High performance image demosaicing hardware designs

    Get PDF
    Most digital cameras capture only one color channel (red, green, or blue) per pixel, because capturing three color channels per pixel would require three image sensors which increases the cost of digital cameras. Therefore, only one image sensor is used, and images pass through a color filter array (CFA) before being captured by the image sensor. Bayer pattern is the most commonly used CFA pattern in digital cameras. Demosaicing is the process of reconstructing the missing color channels of the pixels in the color filtered image using their available neighboring pixels. There are many image demosaicing algorithms with varying reconstructed image quality and computational complexity. In this thesis, high performance hardware architectures are designed for three high quality image demosaicing algorithms, and the proposed hardware architectures are implemented on FPGA. A high performance hardware architecture for Effective Color Interpolation (ECI) demosaicing algorithm is proposed. A modified version of Enhanced ECI demosaicing algorithm and a high performance hardware architecture for this image demosaicing algorithm are proposed. A hybrid ECI and Alternating Projections demosaicing algorithm and a high performance hardware architecture for this image demosaicing algorithm are proposed. The proposed hardware architectures are implemented using Verilog HDL. The Verilog RTL codes are mapped to Xilinx Virtex 6 FPGA. The proposed FPGA implementations are verified with post place & route simulations. They are capable of processing 160, 118, and 119 full HD images per second
    corecore