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9.1 Introduction 

Noise is among the worst artifacts that affect the perceptual quality of the output from a 
digital camera (see Chapter 1 ). While cost-effective and popular, single-sensor solutions to 
camera architectures are not adept at noise suppression. In this scheme, data are typically 
obtained via a spatial subsampling procedure implemented as a color filter array (CFA), 
a physical construction whereby each pixel location measures the intensity of the light 
corresponding to only a single color [1], [2], [3], [4], [5]. Aside from undersampling, 
observations made under noisy conditions typically deteriorate the estimates of the full
color image in the reconstruction process commonly referred to as demosaicking or CFA 
interpolation in the literature [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. A 
typical CFA scheme involves the canonical color triples (i.e., red, green, blue), and the 
most prevalent arrangement called Bayer pattern is shown in Figure 9 .I b. 

As the general trend of increased image resolution continues due to prevalence of multi
media, the importance of interpolation is de-emphasized while the concerns for computa
tional efficiency, noise, and color fidelity play an increasingly prominent role in the decision 
making of a digital camera architect. For instance, the interpolation artifacts become less 
noticeable as the size of the pixel shrinks with respect to the image features, while the 
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(g) (h) 

FIGURE 9.1 (See color insert.) 

Zoomed portion of the Clown image: (a) original color image, (b) color version of ideal CFA image, (c) color 

version of noisy CFA image, (d) demosaicking the ideal CFA image, (e) demosaicking the noisy CFA image, 

(f) demosaicking the noisy CFA image followed by denoising, (g) denoising the noisy CFA image followed by 

demosaicking, and (h) joint denoising and demosaicking of the noisy CFA image. 

decreased dimensionality of the pixel sensors on the complementary metal oxide semicon
ductor (CMOS) and charge coupled device (CCD) sensors make the pixels more susceptible 
to noise. Photon-limited influences are also evident in low-light photography, ranging from 
a specialty camera for precision measurement to indoor consumer photography. 

Sensor data, which can be interpreted as subsampled or incomplete image data, undergo 
a series of image processing procedures in order to produce a digital photograph. Refer 
to Chapters 1 and 3 for details. However, these same steps may amplify noise introduced 
during image acquisition. Specifically, the demosaicking step is a major source of conflict 
between the image processing pipeline and image sensor noise characterization because the 
interpolation methods give high priority to preserving the sharpness of edges and textures. 
In the presence of noise, noise patterns may form false edge structures, and therefore the 
distortions at the output are typically correlated with the signal in a complicated manner 
that makes noise modelling mathematically intractable. Thus, it is natural to conceive of a 
rigorous tradeoff between demosaicking and image denoising. 

For better illustration, Figure 9.1a shows a typical color image. Suppose we simulate 
the noisy sensor observation by subsampling this image according to a CFA pattern (Fig
ure 9.1b) and corrupting with noise (Figure 9.lc). While state-of-the-art demosaicking 
methods such as the ones in [6], [7], [8], [9], [10], (11], [12], [13], [14], [15], [16] do an 
impressive job in estimating the full-color image given ideal sensor data (Figure 9.1d), the 
interpolation may also amplify the noise in the sensor measurements, as demonstrated in 
Figure 9.1e. The state-of-the-art denoising methods applied to Figure 9.1f yield unsatis
factory results (Figure 9.1 g), suggesting a lack of coherent strategy to address interpolation 
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and noise issues jointly. For comparison, the output from a j?int demosaicking and denois
. method [1 7] is shown in Figure 9.lh, clearly demonstratmg the advantages. 
mg · f · · l f" t In this chapter, the problem of estimating the complete nOise- ree Image signa o m~ere~ 
given a set of incomplete observat~ons of ~ixel compon~nts th~t ~re corru~ted by n~tse IS 

roached statistically from a pomt of v1ew of Bayesian statJsttcs, that ts modellmg of 
app . . . d . . 
the various quantities involved in terms of pnors and hkehhood. ~he three . estgn re~Imes 
h t will be considered here can be thought of as simultaneous mterpolat10n and Image 

t a . h · 
denoising, though this chapter has a wider scope in the sense that modelling t e Image 
signal, missing data, and the noise process explicitly yield insight into the i~terpla~ between 
the noise and the signal of interest. The chapter is not intended to compnse detailed step
by-step instructions of how to estimate a complete noise-free im_age; rather we present a 
theoretical basis for generalizing the image signal models to the nmsy subsampled ca~e, and 
ropose major building blocks for manipulating such data. The author feels that leadmg the 

~iscussion in this manner is most effective, as it allows flexibility in the choice of models. 
There are a number of advantages to the proposed estimation schemes over the obvious 

alternative, which is the serial concatenation of the independently designed interpolation 
and image denoising algorithms. For example, the inherent image signal model assump
tions underlying the interpolation procedure may differ from those of the image denoising. 
This discrepancy is not only contradictory and thus inefficient, but also triggers mathe
matically intractable interactions between mismatched models. Specifically, interpolating 
distorted imaae data may impose correlation structures or bias to the noise and image signal 

b . 

in an unintended way. Furthermore, a typical image denoising algorithm assumes a statis-
tical model for natural images, not that of the output of interpolated image data. While 
grayscale and color image denoising techniques have been suggested [18], [19], [20~ , [~ 1 ], 

[22], [23] , [24], [25] , [26], [27], [28], [29], [30], [31], removing noise after demosaickin~, 

however, is impractical. Likewise, although many demosaicking algorithms developed ~n 
the recent years yield impressive results in the absence of sensor noise, the peiformance 1s 
less than desirable in the presence of noise. 

In this chapter, we investigate the problem of estimating a complete color image from 
the noisy undersampled signal using spectral and wavelet analysis of the noisy sensor data. 
In Section 9.2, we characterize the noise corresponding to CMOS and CCD sensors and 
evaluate it with respect to human visual system sensitivities and current image denoising 
techniques. Section 9.3 identifies the structure in the loss of information due to sampling 
and noise by examining the sensor data in the Fourier domain, and motivates a unified ap
proach to interpolation and denoising. To exploit the local aliasing structures, Section 9.4 
refines the spectral analysis of sensor data using time-frequency analysis. Conditioned on 
the signal image model, we propose three frameworks for estimating the complete noise
free image via the manipulation of noisy subsampled data. In Section 9.5, we discuss the 
design of a spatially-adaptive linear filter whose stop-band annihilates color artifacts and 
whose pass-band suppresses noise. Section 9.6 demonstrates the modelling of noisy ~ub

sampled color images in the wavelets domain using a statistical missing data formulatiOn. 
As outlined in Section 9.7, however, it is possible to estimate the wavelet coefficients cor
responding to the desiderata from the wavelet coefficients of the sensor data. This section 
presents example output images obtained using the techniques presented in this chapter. 
Finally, concluding remarks are listed in Section 9.8. 
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9.1.1 A Comment About Model Assumptions 

The wavelet-based statistical models for image signals play a dominant part in the image 
denoising literature. In this paradigm, wavelet coefficients corresponding to image signals 
exhibit a heavy-tailed distribution behavior, motivating the use of Laplacian distribution 
Student's t-distribution, and Gaussian mixtures, to name a few. These heavy-tailed prior~ 
can be written as a continuous mixture of Gaussian with the general form, 

where f.lx and a} are the mean and variance parameters of a random variable x, and q 1: 0 
is an augmented random variable with its own distribution specific to the choice of heavy
tail. Thus, xis conditionally normal; conditioned on q, its posterior distribution can largely 
be manipulated with second-order statistics. Alternatives to wavelet-based models include 
image patches [32], principal components [33], and anisotropic diffusion equations [28]. 
Many of them make use of the sum of (sometimes spatially-adaptive) outer-products of 
vectorized pixel neighborhoods, which is the deterministic-counterpart to the pixel-domain 
second-order statistics. 

The intentions of this chapter, as stipulated previously, are to provide tools for analyzing 
and manipulating subsampled data in a way that is relevant to the CPA image. Rather than 
reinvent signal models for subsampled image data, we choose to work with statistical or 
deterministic models for a complete image data. In doing so, we inherit a rich literature 
in image modelling that has been shown to work well for image denoising, interpolation, 
segmentation, compression, and restoration. Furthermore, the discussion that follows is in
tentionally decoupled from a particular choice of image signal model. Instead, conditioned 
on the complete image model, the primary focus of the discussions will be on making the 
necessary changes amenable to the direct manipulation of the CPA image. 

Specifically, the theoretical frameworks for analyzing subsampled data below are devel
oped in terms of second-order statistics of complete image data. By taking the expectation 
over the conditionals in the posterior (E[x] = E [E[xlqJ] in the example above, where xlq 
in the inner expectation is normal) one can generalize the estimator derived for the multi
variate normal to the heavy-tailed distribution, as in the case of Bayesian estimators. Alter
natively, replacing the second-order statistics with the sum of outer-products would yield 
the deterministic extension of the CFA image processing. In any case, the technical frame
works presented below are nonrestrictive and compatible with a wide range of assumed 
models, allowing for the flexibility in selecting a model best suited for the computational 
and image quality requirements of the application. 

9.1.2 Terminologies and Notational Conventions 

Because there are several technical terms used in this chapter that sound similar but have 
different meanings, we would like to clarify their definitions. The term color filter refers to 
a physical device placed over photosensitive elements called pixel sensors. It yields a color 
coding by cutting out electromagnetic radiations of specified wavelengths. This is not to 
be confused with a filter, or convolution filtering realized by taking a linear combination 
of nearby pixel or sensor values. Likewise, given a two-dimensional signal, terminologies 
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such as frequency and spectrum are to be interpreted in the context of two-dimensional 
Fourier transforms and not in the sense of colorimetry. 

In this chapter, all image signals are assumed to be discrete (or post-sampling). For 
notational simplicity, plain characters (e.g., x) represent a singleton, whereas bol~-face 
characters (e.g., x) represent a vector or a matrix. An arrow over a character symbohz_es a 
vectorization; that is, x is a re-arrangement of x( ·) into a vector form. Other conventiOns 
are summarized below for bookkeeping, but their formal definitions will be made explicit 
in the sequel: 

n E Z2 

x : z2 ----+ JR3 

E : z2 ----+ JR3 
c: z2 ----+ {o, 1p 
e : z2 ----+ JR. 

a : Z2 ----+ lR 

f3 : z2 ----+ JR. 

y : z2 ----+ JR. 

£ : z2 ----+ JR. 
z : Z2 ----+ JR. 
g : z2 x z2 ----+ JR3 
ho, h1 ,/o,/1 : Z----+ lR 

pixel/sample location index 
signal-of-interest, ideal (noise-free) color image; x = 

[x1,x2,x3V are the RGB triples 
noise for x 
color filter coding indicator 
monochromatic or approximate luminance image, f! = 
1 1 1 
4x1+ 2x2+ 4x3 . . . 
color difference or approximate chrommance Image, a = 
X] -X2 

color difference or approximate chrominance image, f3 = 

X3 -X2 

ideal (noise-free) sensor data or CFA image, y(n) = 
cT(n)x(n) 
noise for y 
noisy sensor data, z = y + £ 
spatially-adaptive filter coefficients . 
one-dimensional impulse responses to convolutiOn filters 
used in filterbank 

In the above, the elements in the vector x(n) = [x1 (n ),x2(n ),x3 (n )JT are interpreted as the 
red, green, blue pixel component values, respectively, though the resul~s established _in this 
chapter are equally applicable in other color coding schemes. The lummance-chromma~ce 
representation of a color image, [f!(n),a(n),f3(n)J, is an invertible linear transformati~n 
of x(n). The symbols x: Z----+ lR and£: Z----+ lR are also occasionally used for a genenc 
(nondescriptive) signal and noise, respectively. Singleton functions x(n) and E(n) are used 
interchangeably with x(n) and E(n) to generalize results to the multivariate case, respec-

~~ . . 
In addition, given a two-dimensional function X : Z2 ----+ JR., its Fonner transform IS de-

noted by .X( w ), where, in the two-dimensional case, w = [ ~' roJ]T E lR2 is the modulo-22n 
frequency index. Similarly, let i E {0, 1, ... JF be the subband index for t~e (I+ 1) -
level (separable) two-dimensional filterbank decomposition, where a smaller mdex value 
corresponds to low-frequency channel. Then wj(n) is the filterbank (or wavelet packets) 
coefficient at the i-th subband, n-th spatial location corresponding to the signal x(n). 
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9.2 Noise Model 

In order to design an effective image denoising system, it is important to characteri 
the noi~e in an image sensor. The CMOS photodiode active pixel sensor typically usesz: 
photodwde and thre~ trans.istors, all major sources of noise [34]. The CCD sensors rely on 
~he el~ctr~n-hole pair that Is generated when a photon strikes silicon [35]. While a detailed 
m~esiigatwn of the noise source is beyond the scope of this chapter, studies suggest that 
z . Z ----7 lR, the number of photons encountered during an integration period (duratio 
between resets), is a Poisson process &y: n 

p(z(n)jy(n)) = e-y(n)y(n)Z(n)' 
z(n)! 

whe.re n E .Z2 is the p~xel location index, and y(n) is the expected photon count per inte
gratiOn penod at locatiOn n, which is linear with respect to the intensity of the light. Note 

E [z(n) jy(n)] = y(n) and E [z2(n)- E [z(n) jy(n) J 2 /y(n)] = y(n ). Then, as the integration 

period increases, p(z(n)[y(n)) converges weakly to JV(y(n),y(n)), or 

z(n) ~ y(n) + yY(;i)E(n ), (9.1) 

where E i.JJ. ~ (.0' 1) is independent of y. This approximation is justifiable via a straight
forward apphcatwn of central limit theorem to the binomial distribution. The noise term 
JY(ii)E(n) is commonly referred to as the shot noise. ' 

In. practice, the photodi?de charge (e.g., photodetector readout signal) is assumed pro
porti?nal to z(n ), t~us we mterpr~t y(n) and z(n) as the ideal and noisy sensor data at pixel 
locati~n n, re~pectively. For a typical consumer-grade digital camera, the approximation in 
~quatwn 9.1Is reasonable. The significance of Equation 9.1 is that the signal-to-noise ratio 
Improves for a large value of y(n) (e.g., outdoor photography), while for a small value of 
y(n) (e.g., indoor photography) the noise is severe. To make matters worse, human visual 
response ~o ~he !ight y(n) is often modeled as \IY(Il), suggesting a heightened sensitivity 
to the deviatiOn m the dark regions of the image. To see this, the perceived noise magnitude 
is proportional to: 

VzM-~ = \jy(n) + yY(;i)c(n)-~' 
which is a monotonically decreasing function with respect to y(n) for a fixed value of E(n ). 

There have been some hardware solutions to the sensor noise problems. For example, 
the cyan-magenta-yellow (CMY) CFA pattern performs better in a noisy environment, as 
the quantum efficiency is more favorable for CMY as compared to RGB. That is, a CMY
based CFA allows more photons to penetrate through to the photosensitive element because 
the pigments used in it are considerably thinner than those of the RGB-based CFA. The 
disadvantag~ is that the photo-sensitivity wavelengths of the cyan, magenta, and yellow 
overlap considerably, and therefore the color space conversion from CMY to the RGB color 
space is an unstable operation. Today, the CMY-based CFAs are more readily used in video 
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cameras, since the frame-rate restricts the length of the integration period. Other circuit
based noise-reduction techniques include correlated double sampling. In this scheme, the 
pixel sensors are each sampled twice, first measuring the reset/amplifier noise alone, and 
second measuring the photon counts and the reset/amplifier noise combined. The difference 
of the two is presumed noise-free. 

In reality, efforts to address signal-dependent noise in Equation 9.1 lag behind those 
of image interpolation and image denoising for additive white Gaussian noise (AWGN). 
A standard technique for working with signal-dependent noise is to apply an invertible 
nonlinear operator y( ·) on z such that signal and noise are (approximate! y) decoupled: 

y( Z) [ y(y) rv JV ( y(y) l (j2) 

for some constant cr2 . Homomorphic filtering is one such operator designed with 
monotonically-increasing nonlinear pointwise function y: lR ----7 lR, [36], [37]. The Haar
Fisz transform y: Z2 X lR ----7 Z2 X lR is a multi scale method that asymptotically decorrelates 
signal and noise [38], [39]. In any case, a signal estimation technique (assuming AWGN) 
is used to estimate y(y) given y(z), and the inverse transform y- 1(·) yields an estimate of 
y. The advantage of this approach is the modularity of the design of y( ·) and the estimator. 
The disadvantage is that the signal model assumed for y may not hold for y(y) and the op
timality of the estimator (e.g., minimum mean squared error estimator) in the new domain 
does not translate to optimality in the ranges pace of y, especially when y( ·) significantly 
deviates from linearity. 

An alternative to decorrelation is to approximate the noise standard deviation, J.Y(n). 
The AWGN noise model is effectively a zero-th order Taylor expansion of the Poisson 
process; an affine noise model is the first order Taylor expansion of Equation 9.1 used in 
References [32] and [40]. In practice, these approximations yield acceptable performance 
because the CMOS sensors operate on a relatively limited dynamic range, giving validity to 
the Taylor assumption (when the expansion is centered about the midpoint ofthe operating 
range). The human visual system can also tolerate a greater degree of error in the brighter 
regions of the image, allowing for more accurate noise characterization for small values of 
y (at the cost of poorer characterization for higher ranges pace of y ). Alternatively, empirical 
methods that address signal-dependent noise take a two-step approach [21]. First, a crude 
estimate of the noise variance at each pixel location n is found; second, conditioned on 
this noise variance estimate, we assume that the signal is corrupted by signal-independent 
noise. A piecewise AWGN model achieves a similar approximation. 

Methods that work with the posterior distribution of the coefficients of interests, such 
as Markov chain Monte Carlo and importance sampling, either have a slow convergence 
rate or require a large number of observations [ 41]. Emerging frameworks in Bayesian 
analysis for Poisson noise yield an asymptotic representation of the Poisson process in the 
wavelets domain, but the manipulation of data in this class of representation is extremely 
complicated [42]. 

For all the reasons above, it is clear that the estimation of the mean y given the Poisson 
process z is not a well-understood problem; and existing methods use variations of AWGN 
models to address the Poisson noise. Hence; while acknowledging inadequacies, we restrict 
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our attention to the A WGN problem, 

z(n) = y(n) + e(n ), (9.2) 

where£ i.0. fi(O, cr'l). 

9.3 Spectral Analysis of CFA Image 

In this section, we take a closer look at the sampling scheme and the structure of aliasing 
induced by the Bayer color filter array illustrated in Figure 9.1 b, [11], [17]. The estimation 
of missing pixel components given observed pixel components is generally an ill-posed 
problem. By assuming that the image signals are highly structured, however, we effec
tively assume that the signal-of-interest lives in a lower-dimensional subspace that can be 
represented by the subspace spanned by the color filter array. Thus, although the loss of 
data at the hardware interface is inevitable, the loss of information due to sampling may 
be limited. We will show that the Fourier analysis and aliasing serve as a measure of loss 
of information, and that they motivate joint modelling and manipulation of subsampled 
data and noise (which will subsequently be fine-tuned using locally adaptive schemes in 
Sections 9.5 to 9.7). 

In a color image, such as one shown in Figure 9.1a, the image pixel x(n) = 
[x1 (n ),xz(n ),x3(n )fat the position n E Z2 denotes a vectorial value, typically expressed in 
terms ofRGB coordinates. Figure 9.2a is a grayscale version of Figure 9.1a. Visual inspec
tion of the original color image and its corresponding red, green, and blue channels depicted 
in Figure 9.2b to Figure 9.2d, respectively, reveals that the decomposed color channels may 
contain redundant information with respect to edge and textural formation, reflecting the 
fact that the changes in color at the object boundary are secondary to the changes in inten
sity. It follows from the (de-)correlation of color content at high frequencies and is well 
accepted among the color image scientists that the difference images (e.g., red-green, blue
green) exhibit rapid spectral decay relative to monochromatic image signals (e.g., gray, 
red, green), and are therefore slowly-varying over spatial domain. See Figure 9.2e and Fig
ure 9.2f. Such heuristic intuitions are further backed by human physiology- the contrast 
sensitivity function for the luminance channel in human vision is typically modelled with a 
much higher pass-band than that of the chrominance channels. 

An alternative to spectral modelling strategy based on color-ratio has been studied [43], 
[ 44 ], [ 45], [ 46]. Assuming that objects are piecewise constant color, then the ratios between 
color components within an object are constant, even though the intensities of pixels may 
vary over space. In practice, however, the numerical stability of ratios is difficult to achieve, 
and the spatial variation of the intensity levels is not captured explicitly by this model. For 
these reasons, while acknowledging the merits of the color-ratio modelling strategy, the 
discussions in this chapter will be confined to the difference image modelling. 

Let c(n) = [c1 (n ), cz(n ), c3(n )]T E {[1, O,O]T , [0, 1, OjT, [0,0, 1 f} be a CFA coding such 
that the noise-free sensor data can be written as an inner product, y(n) = cT (n )x(n ). Given 
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(e) 

FIGURE9.2 
Zoomed portion of the Clown image: (a) gray-scale version of original color image, (b) decomposed r~d chan-

nel, (c) decomposed green channel, (d) decomposed blue channel, (e) differenc~ image X! - xz, (f) dtfference 

imagex3 -xz, (g) subsampled version of x1 -x2, and (h) subsampled version of X3 -xz. 

that it is a convex combination, we may then decompose y(n) in the following manner: 

y(n) = c1 (n )x1 (n) + cz(n )xz(n) + c3(n )x3(n) 
= CJ (n )x1 (n) + (1- CJ (n)- q(n) )xz(n) + c3(n )x3 (n) 

= c1 (n)(x1(n) -x2(n)) +q(n)(x3(n) -xz(n)) +xz(n) 

= c1(n )a (n ) +c3(n)f3(n ) +xz(n), (9.3) 

where the difference images a(n) = x1(n) -xz(n) and f3(n ) = x3(n) -xz(n) ar~ c~de 
approximations for the chrominance channels. In oth~r words, the convex _combmat_lOn 
above can be thought of as the summation of x2 ( n) w1th the subsampled _difference Im
ages, c1(n)a (n) and c3(n)f3 (n); it is shown pictorially in Figure 9.2c, F1gure 9.2g and 
Figure 9.2h, as their sum is equal to the se~sor data _in Figure 9.1~. It follows from the 
composition of the dyadic decimation and mterpolatJOn operators md~ced by the ~ayer 
sampling pattern that y(w), the Four!er transform of sensor data y(n), 1s a sum of xz(w) 
and the spectral copies of a ( w) and f3 ( w): 

y(w) = .x2(w) + ~ ((a+ ~ )(w) +(a- ~)(w- [Jr,Of ) 

+(a- ~)(w- [0, Jrf ) +(a+ ~)(w- [Jr , 7r{)) 

= l(w) + ~ ((a- ~)(w- [Jr,Of) 

+(a- ~)(w- [O,Jrf) +(a+ ~)(w- [Jr ,Jrf)), (9.4) 
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(b) 

7i 

(c) (d) 

Log-magnitude two-dimensional spectra of: (a)£, (b)&, (c) fi, and (d) y. The spectra were obtained using the 

Clown image. The figure is color-coded to show contribution from each channel in figure (d): green for P, red 

for&, blue for fi. 

where, without loss of generality, the origin is fixed as c(O, 0) = [1, 0, OjT, and 

(9.5) 

is a crude approximation to the luminance channel. 
The representation of sensor data (Equation 9.4) in terms of luminance I! and difference 

images a and f3 is convenient because a and f3 are typically sparse in the Fourier domain. 
To see this, consider Figure 9.3, in which the log-magnitude spectra of a typical color im
age is shown. The high-frequency components, a well-accepted indicator for edges, object 
boundaries, and textures, are easily found in Figure 9.3a. In contrast, the spectra in Fig
ure 9.3b and Figure 9.3b reveal that a and f3 are low-pass, which supports our earlier claim 
about the slowly-varying nature ofthe signals in Figure 9.2e and Figure 9.2f. It is typically 
easier to estimate a lower bandwidth signal from its sparsely subsampled versions (see Fig
ure 9.2g and Figure 9.2h), since it is less subject to aliasing. The key observation that can 
be made in Equation 9.4, therefore, is that we expect a Fourier domain representation of 
sensor data similar to what is illustrated in Figure 9.3d- the spectral copies of a- {3 cen
tered around [n,OjT and [0, nV overlap with the baseband l, while a+ {3 centered around 
[n, njT remain aliasing-free. 

Note that there exists no straightforward global strategy such that we recover unaliased l 
because both spectral copies centered around [n, OjT and [0, njT are aliased with the base
band l. Dubois et al., however, emphasized that the local image features of the base
band, l, exhibit a strong directional bias, and therefore either (a - f3) ( w - [ Jr' ojT) or 
(a- {3)(w- [0, n]T) is locally recoverable from the sensor data [47]. This observation 
motivates nonlinear processing that is locally adaptive- in fact, most existing demosaick
ing methods can be reexamined from this perspective. Specifically, Figure 9.4 illustrates 
the presumed local aliasing pattern. The locally horizontal images suffer from aliasing 
between land (a- {3)(w- [n,OjT) while we expect that (a- {3)(w- [0, njT) remains 
relatively intact. Conversely, locally vertical images suffer from aliasing between l and 
(a- {3) (w- [0, njT) while (a- {3)(w- [n, OjT) is clean. On a sidenote, locally diagonal 
image features, which are often ignored by the demosaicking algorithm designs, do not 
interfere with (a- /3) ( W- [ Jr, OjT) and (a- /3) ( W- [0, JrjT), making the reconstruction of 
diagonal features a trivial task. 
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FIGURE 9.4 . 

P med aliasing structure in local spectra, conditioned local image features of the surroundmg. Images 
resu · h F 9 3d 

correspond to: (a) y given horizontal features, and (b) y given vertical features. Compare wtt tgure · · 

Finally, let z(n) be the noisy sensor data, 

z(n) = y(n) + E(n) = ct (n )a(n) + c3(n )f3(n) +x2(n) + E(n ), (9.6) 

h i.i.d. N(O ,.._.2) Recall that Fourier transform is a unitary transformation- a spa-w ere E rv Jr l vf . . . I 
tially white noise in space domain remains uncorrelat~d I~ the frequency representatiOn. t 

follows that the Fourier transform of a noisy observatiOn IS 

z(w) = f(w) + l ((a- {3)(w- [n,O]T) 

+(a- {3)(w- (O,n)T) +(a+ {3)(w- [n,n]T)) +e(w). 

In other words, the sensor data is the baseb~nd luminance ima~e l distort~~ by the noise e 
and aliasing due to spectral copies of a and {3, where e, a, an~ f3 are c?nditlona~ly normal. 
A unified strategy to demosaicking and denoising, therefore, IS to design a~ estimator th~t 
suppresses noise and attenuates aliased components simultaneously. We will see h~w this 
can be accomplished via a spatially-adaptive linear filter whose st~p-band .contams the 
spectral copies of the difference images and pass-band suppresses nmse (SectiOn 9.5). 

9.4 Wavelet Analysis of CFA Image 
In the previous section, we established the inadequacy of taking the globa~ approach to 

CFA image processing. In this section, we develop a tim_e-frequ~ncy analys~s framework 
to exploit the local aliasing structures [ 17]. Specifically, Image signals are highly ~onsta
tionary/inhomogeneous and thus an orthogonal filterbank (or wavelet packet) expansiOn for 

sparsely sampled signal would prove useful. . _ 
For simplicity, consider first a one-dimensional signal x :. Z -+ R A .one-~evel filter 

bank structure defined by filters { ho, h1 ,/o,/1} is shown in F1gure 9.5. It IS a hn~a~ tran~
formation composed of convolution filters and decimators. The channel contammg t e 
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x(n) 

FIGURE9.5 

One-level filterbank structure. 

low-frequency components is often called approximation (denoted ~(n)), and the other 
containin~ t_he high-frequency components is referred to as the detail ( Jenoted w;: ( n) ). The 
decomposition can be nested recursively to gain more precision in frequency. The approxi
mation and detail coefficients from one-level decomposition can be analyzed in the Fourier 
domain as: 

Wi ( ro) = l (hi (!!}) x (!!}) + hi ( !fj - n) x (!!} - n) ) , 

where i E {0, 1}. With a careful choice of filters {h0 ,h1,j0 ,JI}, the original signal, x(n) 
can be recovered exactly from the filterbank coefficients w() ( n) and wi ( n). To see this, 
consider the reconstruction of one-level filterbank, as in Figure 9.5. The transfer function 
of the system (or the reconstructed signal xec ( n)) has the following form in the frequency 
domain: 

xrec( Q)) = fo( Q) )W;)(2ro) + 11 ( Q) )Wf (2ro) 

= l(Jo(ro)ho(ro)+ !1(ro)h1(ro))x(ro) 

+l (!o( ro )ho( ro-n)+ !1 ( ro )h1 (ro-n) )x( ro-n). 

In other words, the output is a linear combination of the filtered versions of the signal 
x( ro) and a frequency-modulated signal x( ro-n). The structure in Figure 9.5 is called a 
perfect reconstruction filterbank if 

fo( ro)ho( ro) + !1 ( ro )h1 ( ro) = 2 
fo(ro)ho(ro-n)+ J1(ro)h1(ro-n) =0. 

The filters corresponding to x( ro) constitute a constant, whereas the filters corresponding 
to the aliased version are effectively a zero. 

A large body of literature exists on designing a set of filters { ho, h1 ,Jo,JI} that comprise 
a perfect reconstruction filterbank [ 48]. For example, wavelet packets belong to a class 
of filterbanks arising from the factorizing filters satisfying the Nyquist condition (Smith
Barnwell [48]). In this case, the following are met by construction: 

h1(ro) = -e-JOJmho(-ro-n) 

fo(ro) = h1(ro-n) 

!1 ( ro) = -ho (ro-n). 
(9.7) 
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In other words, h1 is a time-shifted, time-reversed, and frequency-modulated version of 
ho; and fo and fi are time-reversed versions of ho and h1, respectively. Derivation of 
these filters is beyond of the scope of this chapter, and interested readers are referred to 
Reference [48] for details. 

Define modulated signal and subsampled signal of x( n), respectively, as 

Xm(n) = ( -Itx(n) 

Xs(n) = - (x(n) +xm(n)) = 1 {x(n) 
2 0 

for even n 

for odd n. 

To derive an explicit filterbank representation of Xs ( n), we are interested in characterizing 
the relationship between filterbank coefficients of x(n) and xm(n). Let wZm(n) and w~m(n) 
be the approximation and detail coefficients of the one-level filterbank decomposition of 
( -1 t x( n). Then substituting into Equation 9. 7 we obtain 

w~m ( ro) = l ( h1 ( !f}) x ( !f}- n) + h1 ( !f}- n) x ( !f})) 

= l ( - e-Jm ~ ho (- !fj - 7r) x ( !fj - n) - e-Jm( ~ -n) ho (- !fj) x ( !fj) ) 
. w 

e-Jm"'[ ( A* OJ A OJ A* OJ A (OJ)) = - 2 - -h0 ( 2 -n)x( 2 -n)+h0 (z·)x 2 , 

where m is an odd integer, and * denotes the complex conjugation. A subtle but important 
detail of the equations above is that if the approximation and detail coefficients of x( n) 
were computed using ho(-n-m) and h1(-n-m) instead of ho(n) and h1(n), these co
efficients behave exactly like the detail ( w~m ( n)) and approximation ( w-6" ( n)) coefficients 
for ( -1 )nx(n), respectively (note the reversed ordering of detail and approximation). It is 
straightforward to verify that if { ho ( n), h1 ( n)} comprise perfect reconstruction filterbank, 
then {ho( -n- m), h1 ( -n- m)} constitute a legitimate perfect reconstruction filterbank as 
well (we will refer to the latter as the time-reversed filterbank). Reversal of coefficients is 
illustrated in Figure 9.6- the systems in Figure 9.6a and Figure 9.6b are equivalent. 

Restricting our attention to the Haar decomposition for the rest of discussion and fixing 
m = 1, we have that ho(n) = ho( -n- 1) and h1 (n) = -h1 ( -n- 1) and the approximation 
coefficient of ( -l)nx(n) is exactly equal to the detail coefficient of x(n) by construction, 
and vice-versa- i.e., wZm(n) = wi(n) and w~m(n) = w()(n). It follows that the multi
level filterbank decomposition of ( -l)nx(n) is equivalent to the time-reversed filterbank 
decomposition of x( n), but with the reversed ordering of low-to-high frequency coefficients. 
This reversed-order filterbank can be used to derive the filterbank representation of Xs ( n). 
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x(n) 

(a) 

x(n) 

(b) 

FIGURE9.6 

Two equivalent filterbanks for Xm(n) = ( -l)nx(n): (a) filterbank transform of Xm, (b) reversed-order filterbank 

transform of x. Here, * indicates time-reversed filter coefficients. 

Specifically, let wZs (n) and w~s (n) be the approximation and detail coefficients of the one
level filterbank decomposition of x.1. ( n). Then 

x,( ) 1/2(x+xm)( ) 1 (··.X( ) x ( )) 1 ( (( ) ) w0 n = w0 n = 2 w0 n +w0m n = 2 w0 n + wj"(n) 

x, ( ) 1 /2(x+\"m) ( ) 1 (· . .x ( ) x ( ) ) 1 ( ) wi n = w1 n = 2 w 1 n +wt n = 2 wl(n) +wi)(n) = wZs(n). 

Now, update the definition of wj to mean the i-th subband of (I+ 1 )-level filterbank 
decomposition. Then by recursion, we have a general form 

w?(n) = ~ (wJ(n) +•0-i(n)). (9.8) 

Also see Figure 9.7. Equation 9.8 should not come as a surprise, as it is analogous to 
the Fourier domain aliasing where the high frequency component is summed to the low. 
Similar analysis for Xs can be performed for nonHaar decompositions, but omitted here for 
simplicity. 

Extending to two-dimensional signals, let us show the decomposition of CFA image in 

the separable wavelet packet domain. Let wf ( n), wf ( n), wf ( n) be the filterbank coefficients 
corresponding to £(n), a(n),f3(n), respectively, where i = [i0 ,i1jT E {0, 1. ... ,1}2 indexes 
the horizontal and the vertical filterbank channels, respectively. As before, assume without 
loss of generality that c(O, 0) = [1, 0, OjT. In order to apply the filterbank analysis to the 
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Xs(n) 

(a) 

x(n) 

(b) 

FIGURE9.7 

Two equivalent filterbanks for Xs = !(x+xm); up to multiplicative constant 2: (a) filterbank transform of Xs, 

and (b) ordinary and reversed-order filterbank transform of x. Here, we assume the Haar decomposition. 

sensor data, we re-write y(n) in the following manner: 

y(n) =x2(n)+cJ(n)a(n)+q(n)f3(n) 

= X2(n) + ( 1 + ( -l)no + ( -1 tl + ( -l)nO+nl) a~n) 

+ ( l + ( _ I )no+ 1 + ( _1 t 1 + 1 + ( _ 1 yo+nl) f3 ~n) , 

and its corresponding filterbank representation: 

W; (n) = w? (n) + ~ ( wf (n) + w~o,l-ii) (n) + wV-io,i!) (n) + WV-io,l-i!) (n)) 

+~ ( wf (n)- wfio,l-i!) (n)- wfi-io,i!) (n) + wfl-io,l-ii) (n)) 

= w{ (n) + ~ (w~o/-ii)(n) + wV-ioJI)(n) +wV-io,l-ii)(n)) 

~ ( -w~0 ,I-ii) (n)- wfl-ioJr) (n) + wfl-io,l-iJ) (n))' 

where the minus signs in some wf3 terms occur due to translation in space, and w£ (n) is 
the filterbank coefficients of the signal in Equation 9.5. The globally bandlimitedness of 
difference images, as argued in the previous section, allows us to conclude that wf (n) ~ 0 

and wf (n) ~ 0, Vio > i or i 1 > i for some i. The above simplifies to a form that reveals the 
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energy compaction structure within CFA image: 

iff - io < 1, i 1 < 1 

if io < 1, I - i 1 < 1 

iff- io < 1, I - i 1 < 1 
otherwise 

(9.9) 

Recall Equation 9.2 and that the filterbank transforms with appropriate choices of filters 
constitute a unitary transform. Thus, wi ( n) = li{ ( n) + wf ( n), providing 

z() wf(n)+(wa(r'l .)(n)-w(.! .)(n))/4+w~(n) ifio<1,I-i1<1 W· n ~ o, -rt ro, -q z (

wf(n) + ( wU-io,ii) (n)- w~-ioJJ) (n)) /4 +wf(n) if I- io < 1, i1 < 1 

1 wf (n) + ( wU-io/-iJ) (n) + wfl-io/-iJ) (n)) /4 + wf (n) iff- io < 1, I- i 1 < 1 
wf ( n) + wf ( n) otherwise, 

(9.10) 

where wf i._0. uY (0, <J'i) is a filterbank transform of s(n ). In other words, the filterbank 
transf~rma~on of ~oi~y sensor data w2 is the baseband luminance coefficient we distorted by 
the nmse w and ahasmg due to reversed-order filterbank coefficients wa and wf3, where we, 
wa, and wf3 are (conditionally) normal. A unified strategy to demosaicking and denoising, 
therefore, is to design an estimator that estimates we, wa, and wf3 from the mixture of we, 

wa, wf3. and we. We will see how this can be accomplished in Section 9. 7. 
Lastly, we remind the readers that Equation 9.10 can be generalized to any filterbanks 

that satisfy Equation 9.7 using time-reversed filter coefficients for ho and h1• However, 
Haar wavelets are used exclusively in this chapter to simplify the notation. 

9.5 Constrained Filtering 

In this section, we motivate an approach to joint demosaicking and denoising using well
understood DSP machineries [40]. Recall Equations 9.3 and 9.4. We are interested in 
estimating x(n) given z( · ). It is worth noting that even if z(n) for some n corresponds to an 
obs~rvation of a red pixel x1 (n ), for example, z(n) does not suffice as an estimate of x 1 (n) 
(unlike the pure demosaicking problems) because it is contaminated by noise. 
. We ~egin by highlighting monochromatic image denoising methods that operate by tak
mg a hnear combination of neighboring pixels. These methods include bilateral filters 
[28], principal components [31], and total least squares based methods [32], where the lin
ear weights adapt to the local image features. Transform-based shrinkage and threshold 
methods can also be re-interpreted as spatially-varying linear estimators, because there ex
ists a linear combination of neighboring pixels that is equivalent to shrinkage of transform 
coefficients. In the Bayesian estimation framework, the linearity of estimation is (condi
tionally) true for (a mixture of) normally distributed transform coefficients. In any case, the 
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locally adaptive linear estimator, xest, takes the general form: 

xest(n) = [, g(n,m )z(n- m ), 
mEry(n) 
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where z(n) is the noisy version of x(n ), g(n,m) is the spatially-adaptive linear weight_s, and 
the summation is over ry(n ), a local neighborhood of pix~ls_ c~nte~ed around n. Typically, 
we choose g(n,m) such that it solves the least-squares mimmizat10n problem (though not 

necessarily [32]), 

minE llx(n)- xest(n) 11 2 · 
g 

(9.11) 

In this section, we will show how the estimator in the above form can be ~odified such 
that the linear weights can be used to simultaneously interpolate and denmse ~F~ data 
[40]. Let xest(n) be an estimate of ideal color image x(n) by taking a linear combmat10n of 

noisy sensor data z( n). That is, 

xest(n) = [, g(n,m)z(n -m), 
mEry(n) 

(9.12) 

where g(n, m) E JR3 is a spatially-adaptive linear weight. . . 
Let gk(n,m) correspond to the linear weight for estimating Xk· In the followmg ?iscus-

sion, we focus on the estimation of x2(n) via the design of gz(n, ·) because E~uat10n 9.3 
already assumes x2 (n) as its baseband. The results ~chieved he~e ~e gener~hzed to_ the 
estimation of x1(n) and x3(n) at the end of this sect10n. Substltutmg Equation 9.6 mto 

Equation 9 .12, 

x251 (n) = [, gz(n,m)z(n -m) 
mEry(n) 

[, (g2(n,m)(x2(n-m)+£(n-m)) 
mEry(n) 

+g2(n,m) (c1 (n -m)a(n -m) +q(n -m)f3(n -m))). 

(9.13) 

The first term, Lm g2 ( n, m) [x2 ( n - m) + £ (n - m)] represents an ordinary monochromatic 
image denoising. That is, g2 (., . ) operates on the noisy versio~ a: xz ( ·). The extra term 
involving a (.) and f3 (.) also motivates the need for further restnctmg gz ( ·, ·) such that the 

latter term is attenuated. 
To accomplish this task, recall that c1 (n) a (n) and ~3 (n) f3 ( n) occ~py frequency_ regions 

around w = { ( 0, 0), ( 0, 7r), ( 7r, 0), ( 7r, 7r)}. Let us consider a class ~f hnea~ filters With stop
bands near { (0, O), (0, n), ( n, O), ( 7r, n)} (i.e., band-pass). In particular, i~ the filter coeffi
cients corresponding to red and blue samples in CFA sum to zero, respectively, then Vn, 

I, g2(n,m)c1(n-m)=O 
mEry(n) 

I, g2(n,m)q(n-m)=0, 
mEry(n) 

(9.14) 
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and with a finite spatial support on g2 ( ·, m), we can safely assume that the frequency c . om-
po~ents m the. vic~nity of { \0, 0).' (0, 7r), (7r, 0), ( 7r, 7r)} are attenuated as well (because g2 is 
a hnear combmatwn of cosmes m the Fourier domain). 

If the restriction .in .Equation 9 .. I~ holds true, then the estimator in Equation 9.13 reduces 
to a monochromatic Image denot.smg problem - that is, x~st ;::::j Lm g2 ( n, m) [x2 ( n - m) + 
~( n - m) ]. T~erefore, the underlymg strategy for deriving a joint demosaicking and denois
mg o~erator IS to solve a constrained linear estimation problem. In other words, instead of 
EquatiOn 9.11, solve 

l=minE x2(n)- L g2(n,m)[x2(n-m)+t:(n-m)] 
mEry(n) 

2 

subject to Lg2(n,m)c1(n-m) = L,g2(n,m)q(n-m) =0 
m m 

(9.15) 

Conveniently, .th~s optimizat.i~n problem allows us to pretend as though we are designing a 
monochromatic Image denotsmg method. However, the constraints on the filter coefficients 
ensure that 1 remains a good approximation to the residual of the actual problem llx (n) _ 
est( ) 112 ' 2 x2 n. :Note that Equation 9.14 does not imply L.mg2(n,m)c2(n -m) = 0. Instead, the 
~ontnbutwns from x.1 and X3 to the estimation of x2 are limited to the frequency components 
m the band-pass regwn, whereas the contributions from x2 are unrestricted. 

In man~ cases, the existing image denoising techniques naturally extend to simultane
ously solvmg the demosaicking and denoising problems. Let x (and similarly £, z, g) be a 
re-arr~ngement of {x(n- m) lm E ry(n)} into a vector form. Then least-squares solution to 
Equation 9.11 often involves an inner product of the form xest(n) = g[5 (x+ £),where 

gLs = E [(x+ E)(x + £fr 1 E [ (x+ £)T x(n) J. (9.16) 

T.h~ inner product occurs often in Bayesian estimators, when the prior on the data are (con
ditiO~ally) nor~ally d.istributed (e.g., Laplace, Student's t, Gaussian mixture). If this prior 
on~ 1s defined m the lmear transform domain (such as on the wavelet coefficients), then the 
eqmvalent second-order statistics in the pixel domain are simply a linear transformation of 
the statistics in the transform domain. 

Let.M = ITJ(n)l be the size of the neighborhood, ry(n). The band-pass constraint in 
Equation 9.14 may be imposed by asserting that g E JRM lives in a lower-dimensional sub
spac~, span{v E JRMivTcl = vrc3 = 0}, or g = Gs, where G E JR.MxM-2 is an orthogonal 
matn~ whose column vectors span this subspace. Then the constrained LS problem in 
EquatiOn 9.15 can be rewritten as 

(9.17) 

It is easy to verify that the solution to the above has the form xest(n) - g~r ~ h 2 - CLSZ, W ere 

(9.18) 

Note that Equations 9.17 and 9.18 are minor alterations to Equations 9.11 and 9.16 using 
the same second-order statistics, respectively, and thus it is a straightforward exercise to 
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leverage existing monochromatic image denoising methods to a joint demosaicking and 

denoising scheme. 
In order to design spatially adaptive filters similar to Equation 9.18 for estimating x1 and 

x3, we see that Equation 9.3 can be written alternatively as 

y(n) = c2(n)[x2(n) -x1 (n)] +c3(n)[x3(n) -x1(n)] +x1 (n) 
= c1 (n )[x1 (n) -x3(n )] + c2(n) [x2(n) -x3(n )] +x3(n ). 

It follows that the appropriate constraints on filter coefficients g1 (-, ·) and g3 (-, ·) are 

L g1(n,m)c2(n-m) = 0, 
mEry(n) 

L g3(n,m)c1(n-m) = 0, 
mEry(n) 

9.6 Missing Data 

L g1(n,m)q(n-m)=0 
mEry(n) 

L g3(n,m)c2(n-m)=O. 
mEry(n) 

The statistical modelling of image signals in a linear transform domain is primarily mo
tivated by the correlation structures that exist within the transform coefficients of image 
signals. These models, which require a complete observation of image data, are not eas
ily generalizable to the digital camera context, as the observation of color image data is 
incomplete at the sensor interface. That is, processing with missing or incomplete pixels 
is difficult because a linear transformation takes a linear combination of the pixel values, 
and thus all of the noisy transform coefficients are unobserved. Yet, it is still convenient or 
desirable to apply the sophisticated statistical modelling techniques even when none of the 

transform coefficients are observable. 
This section explicitly addresses the issue of combining the treatment of missing data 

and the wavelet -based modeling [ 49]. Bayesian hierarchical modelling is used to capture 
the second-order statistics in the transform domain. We assume a general model form and 
couple the EM algorithm framework with the Bayesian models to estimate the hyper- and 
nuisance parameters via the marginal likelihood; that is, we adopt the empirical partial 
Bayes approach. Within this framework, problems with missing pixels or pixel compo
nents and hence unobservable wavelet coefficients, are handled simultaneously with image 

' 
denoising. 

In order to extend the complete image modelling strategy to incomplete data, let wf ( n) = 
[w~ 1 (n ), w? (n ), w? (n )]T correspond to wavelet coefficients corresponding to X1 ,x2,x3 at i-

th level, and assume that 

X( ) i.i.d. A/(0 ~-) Win rv JY 1 4.> 1 • 

Then the distribution of the neighboring pixel values is also jointly normal, as linear trans
formation of a multivariate normal vector is also normal. Because the wavelet transform is 

unitary, 
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To summari~e, 0 = {~i, <J;} are the hyper- and nuisance parameters, respectively. 
If the 0 Is known, the regression of the missing pixels on the known clean pixel

component ~easurements y(n), E[x(n)ly(n),OJ, serves as a demosaicking method based 
on the LS es~Imator and has a straightforward implementation. Conditioned on the incom
plete and.nms:Y meas~rement of pixel-components z(n), E[x(n)lz(n),OJ, is an interpolated 
and denmsed Image signal, where 

xest(n) = E[x(n) lz(n ), OJ = E [ E[x(n) ly(n ),z(n ), OJ jz(n ), 0 J. 

The nested expectation operator has an intuitive interpretation: the inner expectation 
E[x(~) ly(n ),z(n ), OJ = E[x(n) ly(n), OJ, is an interpolator, and the outer expectation is th~ 
denmser. Conversely, the same formula can equivalently be written as: 

xest(n) = E[x(n )lz(n ), OJ= E [Efx(n) l(x + t:)(n ),z(n ), OJ jz(n ), 0 J, 

~here th~ inner expectation operator, E[x(n) 1 (x + t:)(n ),z(n ), OJ = E[x(n) 1 (x + t:) (n ), OJ 
IS a. denms~r, and the outer expectation is the interpolator. Conditioned on 0, therefore, a 
design of simultaneous demosaicking and denoising method is straightforward. 

The posterior mean ~stim~te, xest, is sensitive to the choice of parameters O; and given 
only a subset of the nmsy pixel components z(n ), we are left with estimating 0 from the 
data.w~en the wavel.et coefficients are not observable. In particular, we solve for the 0 that 
~a_ximizes t~e margm31llog-likelihood logp(ziO), and estimate x as its posterior mean con
ditlo.ne? o~ 0 (where 0 is obtained from the maximal likelihood estimate above). The direct 
maxi~mzati?n of logp(ziO) is very difficult because of the missing pixel values. The EM 
algonthm.cir~umvents this problem by iteratively maximizing the much easier augmented
data log-hkehhood, logp(x, t:IO), where {x, E} are the augmented data. 

Given ~he [t]-th iterate hyper- and nuisance parameter estimate, oft] = {~j'l, <J;[t] }, the 
[t + 1 J-st IteratiOn of the EM algorithm first calls for 

Q ( O;O[tJ) = E [1ogp(x, t:IO) jz, oft] J. 

A celebrated result of EM algorithm [50] states that 

1ogp(zi0)-1ogp(ziOf1l);::: Q(o;oftl) -Q(oftl;oftl), 

where 1?gp(zl0) is the l~g-!ikelihood of 0 based on the actual observed data, z(n ). Thus, 
~he ~hmce o~ 0 that maximizes Q(O;O[tl), that is, the next iterate oft+IJ, increases our ob
JeCtiVe functwn: 

logp (z joft+IJ);::: logp (z joftJ). 

Consequently, maxim~zing Q.( 0.; o[r]) is the same as maximizing 1ogp(zl0), but with 
a~gmented-~a~a sufficient statistics. Given [tJ-th iterate hyper- and nuisance parameters 
O[ l, the explicit formula for Q( 0; O[t]) is in the closed form: 

Q ( 0; o[tl) = E [1ogp(x, t:IO) jz, oft]] 

= ~E [1ogp(wf(n)l~i)+1ogp(wj(n)I<J;) jz,o[tJJ. (9.19) 
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It is then easy to verify that the maximizer of Q( 0; O[t]) is the weighted least squares 
estimate [50]: 

(9.20) 

where M is the number of wavelets samples in the i-th subband. In each iteration, the 
computation of the sufficient statistics in Equation 9.19 is often called expectation- or 
E-step, whereas the process of carrying out Equation 9.20 to find O[t+l] is referred to 
as maximization- or M-step. Carrying out the math to find E[wf(n)wf(n)lz,O[t]J and 
E[wjT (n )wi(n) lz, 0[1l] in E-step is rather cumbersome, and the derivation is omitted in this 
chapter. Interested readers are encouraged to refer to References [49] and [50] for more 
details. 

As was the case in the previous section, it is worth noting that wavelet coefficients are 
often modelled with heavy-tailed distributions (e.g., Laplace, Student's t, Gaussian mix
ture). Distributions belonging to an exponential family can be rewritten as a scalar mixture 
of Gaussian random variables, and thus are conditionally Gaussian. The EM algorithm 
developed above is therefore generalized to a heavy-tailed distribution via the integration 
over the mixture variable in the posterior sense. 

9.7 Filterbank Coefficient Estimation 

Computational efficiency and elegance of shrinkage or thresholding estimators and the
oretical properties amenable to spatial inhomogeneities have contributed to the immense 
popularity of wavelet-based methods for image denoising. However, typical denoising 
techniques assume complete grayscale or color image observation, and hence must be ap
plied after demosaicking. In the previous section we showed that it is possible to model 
noisy color images in the wavelet domain directly by taking advantage of the statistical 
framework of missing data. However, the computational burden of doing so is severe, and 
the energy compaction arguments put forth in Section 9.4 suggest an alternative approach 
by choosing to work with wavelet coefficients of the noisy subsampled data directly. In this 
section, we propose necessary changes to a complete image wavelet coefficient model such 
that it is amenable to the direct manipulation of w{ ( n), [I 7]. 

Given that the difference images are sufficiently low-pass, simplification in Equation 9.9 
reveals that there is a surprising degree of similarity between w{ (n) and wf (n ). Specifi
cally, w{(n);::::: wf(n) for the majority of subbands- the exceptions are the subbands that 
are normally considered high-frequency, which now contain a strong mixture of the low
frequency (or scaling) coefficients from the difference images, a and f3. Operating under 
the premises that the filterbank transform decomposes image signals such that subbands are 
approximately uncorrelated from each other, the posterior mean estimate of wf (n) takes the 

i 
!': 
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form 

{ wf} est ( n) = E [ wf ( n) I wf J ~ E [ wf ( n) I wf +£ J 

for all sub bands that meet the wf ( n) ~ wf ( n) approximation. Since the wavelet shri k 
f f f · JR?. lR?. ( f+E) f f . n age 
unc IOn · ---+ .' ! wi_ = E ( wi ( n) lwi +£) Is a well studied problem in the literature, 

we c_an leverage exis~mg Image denoising methods to the CPA image context. In a simple 
special case where wi ( n) rv JY ( 0, crl,i), the L 2 estimator is 

However, in the subbands that contain a mixture of w~ w0 w~ and wE we must pro d 
I' I' I' i• cee 

with caution. Let w0 (n) rv JY(O cr2 ) 13 ( ) A/(0 2 ) C · 
• A A' ' a,i , wi n "'Jr , crf3,i . onsider the case such that 
10 >~-I and ii <I, and definej = (i0 ,I- i1),k =(I- io,l- i!). Then wf(n ), wj(n ), wi(n) 

are highly correlated due to their common components in their mixture wa and w/3 wh 
., . . , il ;1 , ere 
l =(I -To, li). Thus the L2 estimates for wf(n ), wj(n ), w£(n) are 

[{wf}est(n)J ( [wf(n)J [W.(n)J) 
{ w{}::>n) = E w~(n) w~(n) 
{wk} (n) wk(n) wk(n) 

( [ 
f( )] [ z( )] T) (. T) -I w; n wi n wi(n) wi(n) w:: 

= E ~(n) j(n) E [w~(n)J [w~(n)J [wJJ 
k(n) k(n) Wk(n) Wk(n) wf 

Similarly, 

[{wpyst(n)]- ([w;f(n)l [w~(n)J) 
{w~}est(n) -E 13() wj(n) 

t' w.l n z 
I wk(n) 

_ ( [w;f(n )] [w~(n )] T) ( [wf(n )] [wf(n )] T) -I [wf] -E 13( ) wj(n) E wj(n) w::(n) w:: 
w.l n z 1 1 

I W Z Z k(n) wk(n) Wk(n) wf 

[ 

(J2 ·I (J2 ·I (J2 ·I l ~ __f!L _E.L 
- 16 ~6 13 
- - uJ,i' u/3/ - uf3.i1 

16 16 16 

Color Filter Array Image Analysis for Joint Demosaicking and Denoising 261 

Once { wf} est, { wr} est, { wf } est are computed Vi, n as above, then xest ( n) is calculated by 

taking the inverse filterbank transform of { wf} est' { wr} est' { wf} est to find the estimates of 
e(n), a(n),f3(n), which in tum is used to solvexest. 

Practically, it should be noted that the actual implementation of this method should in
clude cycle-spinning, a standard technique in filterbank and wavelet literature whereby a 
linear space-variant system can be transformed into linear space-invariant system via av
eraging over all possible spacial shifts. As with the previous sections, we note that the 
estimator naturally extends to multivariate normal or heavy-tailed distributions. 

9.8 Conclusion 

Given the inadequacies and model inconsistencies of treating the image denoising and 
demosaicking problem independently, we focused on the analysis and the techniques for 
processing (see Figure 9.8 and Figure 9.9) subsampled data. In particular, the Fourier and 
filterbank (wavelet-packet) analyses reveal a systematic aliasing structure in CPA images, 
where the observed data consists of a mixture of baseband luminance signal, spectrally
shifted difference images, and noise. The same analysis motivates a unified strategy to 
address demosaicking and denoising estimation problems by interpreting the sensor data as 
luminance image distorted by noise with some degrees of structure. 

Conditioned on the complete observation image model of the digital camera designer's 
choosing, we proposed three design regimes for estimating the complete noise-free im
age signal of interest given a set of incomplete observations of pixel components that are 
corrupted by noise. First, well-understood DSP machineries were employed to design a 
spatially-adaptive linear filter whose stop-band contains the spectral copies of the differ
ence images, and the pass-band suppresses noise. Second, coupling of the EM algorithm 
framework with the Bayesian models to estimate the hyper- and nuisance parameters via 
the marginal likelihood, and in tum, adopting the empirical partial Bayes approach for 
estimating the ideal color image data allowed us to apply heavy-tailed priors to the unob
servable wavelet coefficients. Third, exploiting the reversed-order filterbank structure, a 
regression of luminance and difference image filterbank coefficients on the CPA image fil
terbank coefficients were simplified. The above estimation techniques were derived using 
second-order statistics for complete observation models. 

Acknowledgments 

The author would like to thank his wonderful collaborators, Dr. Thomas W. Parks in the 
Department of Electrical and Computer Science at Cornell University, Dr. Xiao-Li Meng in 
the Department of Statistics at Harvard University, and Dr. Patrick J. Wolfe in the School of 
Engineering and Applied Sciences at Harvard University, whose invaluable contributions 

r! ~ 
'Ill 
'ill' 

1'1 

I~ 



262 Single-Sensor Imaging: Methods and Applications for Digital Cameras 

(a) (b) 

(c) (d) 

FIGURE9.8 

Reconstruction of the Peppers image given a simulated noisy sensor data: (a) noise-free original color image, 

(b) color version of simulated noisy sensor data, (c) estimated with demosaicking method in Reference [7] and 

denoising method in [23], (d) estimated with the approach in Section 9.5, (c) estimated with the approach in 

Section 9.6, and (f) estimated with the approach in Section 9.7. 
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(a) (b) 

(c) (d) 

(e) (f) 

FIGURE9.9 

Reconstruction of the Lena image given a simulated noisy sensor data: (a) noise-free original color image, (b) 

color version of simulated noisy sensor data, (c) estimated with demosaicking method in Reference [7] and 

denoising method in [23], (d) estimated with the approach in Section 9.5, (e) estimated with the approach in 

Section 9.6, and (f) estimated with the approach in Section 9.7. 
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