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9.1 Introduction

Noise is among the worst artifacts that affect the perceptual quality of the output from a
digital camera (see Chapter 1). While cost-effective and popular, single-sensor solutions to
camera architectures are not adept at noise suppression. In this scheme, data are typically
obtained via a spatial subsampling procedure implemented as a color filter array (CFA),
a physical construction whereby each pixel location measures the intensity of the light
corresponding to only a single color [1], [2], [3], [4], [S]. Aside from undersampling,
observations made under noisy conditions typically deteriorate the estimates of the full-
color image in the reconstruction process commonly referred to as demosaicking or CFA
interpolation in the literature [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. A
typical CFA scheme involves the canonical color triples (i.e., red, green, blue), and the
most prevalent arrangement called Bayer pattern is shown in Figure 9.1b.

As the general trend of increased image resolution continues due to prevalence of multi-
media, the importance of interpolation is de-emphasized while the concerns for computa-
tional efficiency, noise, and color fidelity play an increasingly prominent role in the decision
making of a digital camera architect. For instance, the interpolation artifacts become less
noticeable as the size of the pixel shrinks with respect to the image features, while the
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“(b)

(e) ()
FIGURE 9.1 (See color insert.)

(@ ' (h)

Zoomed portion of the Clown image: (a) original color image, (b) color version of ideal CFA image, (c) color
version of noisy CFA image, (d) demosaicking the ideal CFA image, () demosaicking the noisy CFA image
(f) demosaicking the noisy CFA image followed by denoising, (g) denoising the noisy CFA image followedi ,
demosaicking, and (h) joint denoising and demosaicking of the noisy CFA image. ’

decreased dimensionality of the pixel sensors on the complementary metal oxide semicon-
duct(?r (CMOS) and charge coupled device (CCD) sensors make the pixels more susceptible
to n01§e. Photon-limited influences are also evident in low-light photography, ran ging from
a specialty camera for precision measurement to indoor consumer photograp’hy.

Sepsor dé}ta, which can be interpreted as subsampled or incomplete image data, undergo
a series of image processing procedures in order to produce a digital photograp’h Refer
to Chapters 1 and 3 for details. However, these same steps may amplify noise intr'oduced
during 1mag§ acquisition. Specifically, the demosaicking step is a major source of conflict
petween the Image processing pipeline and image sensor noise characterization because the
Interpolation methods give high priority to preserving the sharpness of edges and textures
II'I the presence of noise, noise patterns may form false edge structures, and therefore the-
distortions at the output are typically correlated with the signal in a complicated manner
that makes noise modelling mathematically intractable. Thus, it is natural to conceive of a
rigorous tradeoff between demosaicking and image denoising.

For ‘better illustration, Figure 9.1a shows a typical color image. Suppose we simulate
the noisy sensor observation by subsampling this image according to a CFA pattern (Fig-
ure 9.1b) and corrupting with noise (Figure 9.1c). While state-of-the-art demosaicking
Tnethods. suT:h as the ones in [6], [7], [8], [9], [10], [11], [12], [13], [14], [15] [16] do an
?mpressw.e Job in estimating the full-color image given ideal sensor data (Figur’e 9.1d), the
1gterp01at10n may also amplify the noise in the sensor measurements, as demonst'rate,d in
Figure 9.1e. The state-of-the-art denoising methods applied to Figure 9.1f yield unsatis-
factory results (Figure 9.1 g), suggesting a lack of coherent strategy to address interpolation
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and noise issues jointly. For comparison, the output from a joint demosaicking and denois-
ing method [17] is shown in Figure 9.1h, clearly demonstrating the advantages.

In this chapter, the problem of estimating the complete noise-free image signal of interest
given a set of incomplete observations of pixel components that are corrupted by noise is
approached statistically from a point of view of Bayesian statistics, that is modelling of
the various quantities involved in terms of priors and likelihood. The three design regimes
that will be considered here can be thought of as simultaneous interpolation and image
denoising, though this chapter has a wider scope in the sense that modelling the image
signal, missing data, and the noise process explicitly yield insight into the interplay between
the noise and the signal of interest. The chapter is not intended to comprise detailed step-
by-step instructions of how to estimate a complete noise-free image; rather we present a
theoretical basis for generalizing the image signal models to the noisy subsampled case, and
propose major building blocks for manipulating such data. The author feels that leading the
discussion in this manner is most effective, as it allows flexibility in the choice of models.

There are a number of advantages to the proposed estimation schemes over the obvious
alternative, which is the serial concatenation of the independently designed interpolation
and image denoising algorithms. For example, the inherent image signal model assump-
tions underlying the interpolation procedure may differ from those of the image denoising.
This discrepancy is not only contradictory and thus inefficient, but also triggers mathe-
matically intractable interactions between mismatched models. Specifically, interpolating
distorted image data may impose correlation structures or bias to the noise and image signal
in an unintended way. Furthermore, a typical image denoising algorithm assumes a statis-
tical model for natural images, not that of the output of interpolated image data. While
grayscale and color image denoising techniques have been suggested [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], removing noise after demosaicking,
however, is impractical. Likewise, although many demosaicking algorithms developed in
the recent years yield impressive results in the absence of sensor noise, the performance is
less than desirable in the presence of noise.

In this chapter, we investigate the problem of estimating a complete color image from
the noisy undersampled signal using spectral and wavelet analysis of the noisy sensor data.
In Section 9.2, we characterize the noise corresponding to CMOS and CCD sensors and
evaluate it with respect to human visual system sensitivities and current image denoising
techniques. Section 9.3 identifies the structure in the loss of information due to sampling
and noise by examining the sensor data in the Fourier domain, and motivates a unified ap-
proach to interpolation and denoising. To exploit the local aliasing structures, Section 9.4
refines the spectral analysis of sensor data using time-frequency analysis. Conditioned on
the signal image model, we propose three frameworks for estimating the complete noise-
free image via the manipulation of noisy subsampled data. In Section 9.5, we discuss the
design of a spatially-adaptive linear filter whose stop-band annihilates color artifacts and
whose pass-band suppresses noise. Section 9.6 demonstrates the modelling of noisy sub-
sampled color images in the wavelets domain using a statistical missing data formulation.
As outlined in Section 9.7, however, it is possible to estimate the wavelet coefficients cor-
responding to the desiderata from the wavelet coefficients of the sensor data. This section
presents example output images obtained using the techniques presented in this chapter.
Finally, concluding remarks are listed in Section 9.8.
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9.1.1 A Comment About Model Assumptions

The wavelet-based statistical models for image signals play a dominant part in the image
denoising literature. In this paradigm, wavelet coefficients corresponding to image signag
exhibit a heavy-tailed distribution behavior, motivating the use of Laplacian distribution,
Student’s t-distribution, and Gaussian mixtures, to name a few. These heavy-tailed priors
can be written as a continuous mixture of Gaussian with the general form,

qu ~ ‘A/(nuzh 0}2/6]),

where y, and o7 are the mean and variance parameters of a random variable x, and ¢ #0
is an augmented random variable with its own distribution specific to the choice of heavy-
tail. Thus, x is conditionally normal; conditioned on g, its posterior distribution can largely
be manipulated with second-order statistics. Alternatives to wavelet-based models include
image patches [32], principal components [33], and anisotropic diffusion equations [28].
Many of them make use of the sum of (sometimes spatially-adaptive) outer-products of
vectorized pixel neighborhoods, which is the deterministic-counterpart to the pixel-domain
second-order statistics.

The intentions of this chapter, as stipulated previously, are to provide tools for analyzing
and manipulating subsampled data in a way that is relevant to the CFA image. Rather than
reinvent signal models for subsampled image data, we choose to work with statistical or
deterministic models for a complete image data. In doing so, we inherit a rich literature
in image modelling that has been shown to work well for image denoising, interpolation,
segmentation, compression, and restoration. Furthermore, the discussion that follows is in-
tentionally decoupled from a particular choice of image signal model. Instead, conditioned
on the complete image model, the primary focus of the discussions will be on making the
necessary changes amenable to the direct manipulation of the CFA image.

Specifically, the theoretical frameworks for analyzing subsampled data below are devel-
oped in terms of second-order statistics of complete image data. By taking the expectation
over the conditionals in the posterior (E X =E[E [xlg]] in the example above, where x|q
in the inner expectation is normal) one can generalize the estimator derived for the multi-
variate normal to the heavy-tailed distribution, as in the case of Bayesian estimators. Alter-
natively, replacing the second-order statistics with the sum of outer-products would yield
the deterministic extension of the CFA image processing. In any case, the technical frame-
works presented below are nonrestrictive and compatible with a wide range of assumed
models, allowing for the flexibility in selecting a model best suited for the computational
and image quality requirements of the application.

9.1.2 Terminologies and Notational Conventions

Because there are several technical terms used in this chapter that sound similar but have
different meanings, we would like to clarify their definitions. The term color filter refers to
a physical device placed over photosensitive elements called pixel sensors. It yields a color
coding by cutting out electromagnetic radiations of specified wavelengths. This is not to
be confused with a filter, or convolution filtering realized by taking a linear combination
of nearby pixel or sensor values. Likewise, given a two-dimensional signal, terminologies
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such as frequency and spectrum are to be interpreted in the context of two-dimensional
Fourier transforms and not in the sense of colorimetry. . '

In this chapter, all image signals are assumed to be d1scr§te (or post-sampling). For
notational simplicity, plain characters (e.g., x) represent a singleton, whereas bol@—face
characters (e.g., x) represent a vector or a matrix. An arrow over a character symbohz.es a
vectorization; that is, X is a re-arrangement of x(-) into a vectc')r‘ form.. Other conventlc')n.s
are summarized below for bookkeeping, but their formal definitions will be made explicit

in the sequel:

nc7z? pixel/sample location index .

x: 7> - R? signal-of-interest, ideal (noise-free) color image; x =
[x1,%2,x3]" are the RGB triples

€:7° - R’ noise for x

c: 7> —{0,1}3 color filter coding indicator ' . -

0:7* >R monochromatic or approximate luminance image, ¢ =
%xl + %xz + %x3 . ‘

o:7*—R color difference or approximate chrominance image, o =

B:7*>—R color difference or approximate chrominance image, 8 =
X3 X2 ‘

y:7Z* =R ideal (noise-free) sensor data or CFA image, y(n) =
e’ (n)x(n)

e:7*—R noise for y

2:7* =R noisy sensor data, z=y+ ¢ .

g:7*x7*— R spatially-adaptive filter coefficients

one-dimensional impulse responses to convolution filters
used in filterbank

ho,hi, fo, f1: Z — R

In the above, the elements in the vector x(n) = [x (r),x2(n),x3(n)]" are inter[.)reted.as th.e
red, green, blue pixel component values, respectively, though the resul.ts established in this
chapter are equally applicable in other color coding schemefs. Th.e 1ungnance—chrom1napce
representation of a color image, [¢(n),a(n),B(n)], is an 1nvert}ble linear transformathn
of x(n). The symbols x: Z — R and € : Z — R are also occ§510nally used for a generic
(nondescriptive) signal and noise, respectively. Singleton functions x(n) gnd €(n) are used
interchangeably with x(r) and €(n) to generalize results to the multivariate case, respec-
thIeliya‘lddition, given a two-dimensional function x : Z? — R, itsTFourigr‘ transform is de-
noted by £(w), where, in the two-dimensional case, w = [y, ©] € R# is the modu10—227r
frequency index. Similarly, let i € {0,1,...,1}% be th.e'subband index for tl.le (I+1)*-
level (separable) two-dimensional filterbank decomposition, where a smaller index value
corresponds to low-frequency channel. Then w}(n) is the ﬁlte.rbank (or Wavelet packets)
coefficient at the i-th subband, n-th spatial location corresponding to the signal x(n).
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R
9.2 Noise Model

In o.rdef to design an effective image denoising system, it is important to characterize
the n01§e in an image sensor. The CMOS photodiode active pixel sensor typically useg
photodiode and three transistors, all major sources of noise [34]. The CCD sensors rel oa
Fhe elt?ctron—hole pair that is generated when a photon strikes silicon [35]. While a deta}ileg
Investigation of the noise source is beyond the scope of this chapter, studies suggest that
z:7Z* — R, the number of photons encountered during an integration period (duratio
between resets), is a Poisson process Py "

ey (p):n)
z(m)t

p(z(n)|y(n)) =

2 . . . .
Whe're ne Z is the pixel location index, and y(n) is the expected photon count per inte-
gration period at location n, which is linear with respect to the intensity of the light. Note

E|z(n) ly(n)] = y(n) and E [zz(n) — E[z(n) ’y(n)]z’y(n)} = y(n). Then, as the integration
period increases, p(z(n)|y(n)) converges weakly to .4 (y(n),y(n)), or

z(n) ~ y(n) +\/y(n)e(n), 9.1)
where ¢ "X _y (0,1) is independent of y. This approximation is justifiable via a straight-
forward application of central limit theorem to the binomial distribution. The noise term
V¥(r)€(n) is commonly referred to as the shot noise. ,

In. practice, the photodiode charge (e.g., photodetector readout signal) is assumed pro-
port19nal to z(n), thus we interpret y(n) and z(n) as the ideal and noisy sensor data at pixel
locatl(.)n n, respectively. For a typical consumer-grade digital camera, the approximation in
Equatlon 9.1 is reasonable. The significance of Equation 9.1 is that the signal-to-noise ratio
improves for a large value of y(n) (e. g., outdoor photography), while for a small value of
y(n) (e.g., indoor photography) the noise is severe. To make matters worse, human visual
response to the light y(n) is often modeled as {/ y(n), suggesting a heightened sensitivity

'to the devliation in the dark regions of the image. To see this, the perceived noise magnitude
18 proportional to:

V2] = 3/3m) = {/3(n) + /e (m) — /3.

which is a monotonically decreasing function with respect to y(n) for a fixed value of &(n).

There have been some hardware solutions to the sensor noise problems. For example,
the cyan-magenta-yellow (CMY) CFA pattern performs better in a noisy environment, as
the quantum efficiency is more favorable for CMY as compared to RGB. That is, a Cl\/’IY-
basec? CFA allows more photons to penetrate through to the photosensitive elemen,t because
the pigments used in it are considerably thinner than those of the RGB-based CFA. The
disadvantage is that the photo-sensitivity wavelengths of the Cyan, magenta, and yellow
overlap considerably, and therefore the color space conversion from CMY to the RGB color
space 1s an unstable operation. Today, the CMY-based CFAs are more readily used in video
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cameras, since the frame-rate restricts the length of the integration period. Other circuit-
pased noise-reduction techniques include correlated double sampling. In this scheme, the
pixel sensors are each sampled twice, first measuring the reset/amplifier noise alone, and
second measuring the photon counts and the reset/amplifier noise combined. The difference
of the two is presumed noise-free.

In reality, efforts to address signal-dependent noise in Equation 9.1 lag behind those
of image interpolation and image denoising for additive white Gaussian noise (AWGN).
A standard technique for working with signal-dependent noise is to apply an invertible
nonlinear operator ¥(+) on z such that signal and noise are (approximately) decoupled:

1@l ») ~ A (1), 067)

for some constant 2. Homomorphic filtering is one such operator designed with
monotonically-increasing nonlinear pointwise function y: R — R, [36], [37]. The Haar-
Fisz transform y : Z? x R — Z? x R is a multiscale method that asymptotically decorrelates
signal and noise [38], [39]. In any case, a signal estimation technique (assuming AWGN)
is used to estimate y(y) given y(z), and the inverse transform y~!(-) yields an estimate of
y. The advantage of this approach is the modularity of the design of ¥(-) and the estimator.
The disadvantage is that the signal model assumed for y may not hold for y(y) and the op-
timality of the estimator (e.g., minimum mean squared error estimator) in the new domain
does not translate to optimality in the rangespace of y, especially when () significantly
deviates from linearity.

An alternative to decorrelation is to approximate the noise standard deviation, +/y(n).
The AWGN noise model is effectively a zero-th order Taylor expansion of the Poisson
process; an affine noise model is the first order Taylor expansion of Equation 9.1 used in
References [32] and [40]. In practice, these approximations yield acceptable performance
because the CMOS sensors operate on a relatively limited dynamic range, giving validity to
the Taylor assumption (when the expansion is centered about the midpoint of the operating
range). The human visual system can also tolerate a greater degree of error in the brighter
regions of the image, allowing for more accurate noise characterization for small values of
y (at the cost of poorer characterization for higher rangespace of y). Alternatively, empirical
methods that address signal-dependent noise take a two-step approach [21]. First, a crude
estimate of the noise variance at each pixel location n is found; second, conditioned on
this noise variance estimate, we assume that the signal is corrupted by signal-independent
noise. A piecewise AWGN model achieves a similar approximation.

Methods that work with the posterior distribution of the coefficients of interests, such
as Markov chain Monte Carlo and importance sampling, either have a slow convergence
rate or require a large number of observations [41]. Emerging frameworks in Bayesian
analysis for Poisson noise yield an asymptotic representation of the Poisson process in the
wavelets domain, but the manipulation of data in this class of representation is extremely
complicated [42].

For all the reasons above, it is clear that the estimation of the mean y given the Poisson
process z is not a well-understood problem; and existing methods use variations of AWGN
models to address the Poisson noise. Hence,; while acknowledging inadequacies, we restrict
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our attention to the AWGN problem,
z(n) =y(n) +¢&(n), 92)

iid.
where £ "~ N(0,062).

9.3 Spectral Analysis of CFA Image

In this section, we take a closer look at the sampling scheme and the structure of aliasing

induced by the Bayer color filter array illustrated in Figure 9.1b, [11], [17]. The estimation
of missing pixel components given observed pixel components is generally an ill-posed
problem. By assuming that the image signals are highly structured, however, we effec-
tively assume that the signal-of-interest lives in a lower-dimensional subspace that can be
represented by the subspace spanned by the color filter array. Thus, although the loss of
data at the hardware interface is inevitable, the loss of information due to sampling may
be limited. We will show that the Fourier analysis and aliasing serve as a measure of loss
of information, and that they motivate joint modelling and manipulation of subsampled
data and noise (which will subsequently be fine-tuned using locally adaptive schemes in
Sections 9.5 t0 9.7).

In a color image, such as one shown in Figure 9.la, the image pixel x(n) =
[x1(n),x2(n),x3(n)]T at the position n € Z? denotes a vectorial value, typically expressed in
terms of RGB coordinates. Figure 9.2a is a grayscale version of Figure 9.1a. Visual inspec-
tion of the original color image and its corresponding red, green, and blue channels depicted
in Figure 9.2b to Figure 9.2d, respectively, reveals that the decomposed color channels may
contain redundant information with respect to edge and textural formation, reflecting the
fact that the changes in color at the object boundary are secondary to the changes in inten-
sity. It follows from the (de-)correlation of color content at high frequencies and is well
accepted among the color image scientists that the difference images (e.g., red-green, blue-
green) exhibit rapid spectral decay relative to monochromatic image signals (e.g., gray,
red, green), and are therefore slowly-varying over spatial domain. See Figure 9.2¢ and Fig-
ure 9.2f. Such heuristic intuitions are further backed by human physiology — the contrast
sensitivity function for the luminance channel in human vision is typically modelled with a
much higher pass-band than that of the chrominance channels.

An alternative to spectral modelling strategy based on color-ratio has been studied [43],
[44], {45], [46]. Assuming that objects are piecewise constant color, then the ratios between
color components within an object are constant, even though the intensities of pixels may
vary over space. In practice, however, the numerical stability of ratios is difficult to achieve,
and the spatial variation of the intensity levels is not captured explicitly by this model. For
these reasons, while acknowledging the merits of the color-ratio modelling strategy, the
discussions in this chapter will be confined to the difference image modelling.

Lete(n) = [c1(n),c2(n),c3(n)])" € {[1,0,0]", [0,1,0]", [0,0,1]7} be a CFA coding such
that the noise-free sensor data can be written as an inner product, y(n) = ¢’ (n)x(n). Given
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FIGURE 9.2
Zoomed portion of the Clown image: (a) gray-scale version of original color image, (b) decomposed red chan-

nel, (c) decomposed green channel, (d) decomposed blue channel, (e) difference image x, — X2, (f) difference

image x3 — x2, (&) subsampled version of x; — X2, and (h) subsampled version of x3 —x3.

that it is a convex combination, we may then decompose y(n) in the following manner:

y(n) = c1(m)x (n) + ca(n)xz(n) + c3(m)x3(n)
— ci(m)xy(n) + (1 c1(n) — ca(n))xa(n) + c3(m)x3(n)
¢1(n)(x1(n) — x2(n)) + c3(m) (x3(n) — x2(n)) +x2(n)
c1(n)a(n) +c3(n)B(n) +x2(n), 9.3)

where the difference images o(n) = x1(n) — x2(n) and B(n) = x3(n) — x2(n) are cn.lde
approximations for the chrominance channels. In othefr words, the convex.combmat.lon
above can be thought of as the summation of x(n) w1th the. subsampled .dlfference 1m(;
ages, ci(n)a(n) and c3(n)B(n); it is shown pictorial.ly in Figure 9.2c, Figure ?.2g alr;l

Figure 9.2h, as their sum is equal to the sensor data 'm Figure 9.11?. It follows from the
composition of the dyadic decimation and interpolation operators mdu'ced by the I?ayer
sampling pattern that §(w), the Fourier transform of sensor data y(n), is a sum of ¥(w)

and the spectral copies of &(w) and B(w):

(6 B)w— 0.2 + @+ B)(w [z ")
— i)+ 5 (&~ B)w—(m0)")
16— B)w— 0.7+ @+ B~ ). ©4)
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FIGURE 9.3

Log-magnitude two-dimensional spectra of: (a) é, ) &, (c) ['}, and (d) ¥. The spectra were obtained using the
Clown image. The figure is color-coded to show contribution from each channel in figure (d): green for ?, red
for &, blue for B.

where, without loss of generality, the origin is fixed as ¢(0,0) = [1,0,0]”, and

0= 0(w) + 30(w) 4 ;Bw) = 151(w) + 30(w) + (@) ©9.3)
is a crude approximation to the luminance channel.

The representation of sensor data (Equation 9.4) in terms of luminance ¢ and difference
images o and 3 is convenient because o and 3 are typically sparse in the Fourier domain.
To see this, consider Figure 9.3, in which the log-magnitude spectra of a typical color im-
age is shown. The high-frequency components, a well-accepted indicator for edges, object
boundaries, and textures, are easily found in Figure 9.3a. In contrast, the spectra in Fig-
ure 9.3b and Figure 9.3b reveal that & and 8 are low-pass, which supports our earlier claim
about the slowly-varying nature of the signals in Figure 9.2e and Figure 9.2f. It is typically
easier to estimate a lower bandwidth signal from its sparsely subsampled versions (see Fig-
ure 9.2g and Figure 9.2h), since it is less subject to aliasing. The key observation that can
be made in Equation 9.4, therefore, is that we expect a Fourier domain representation of
sensor data similar to what is illustrated in Figure 9.3d — the spectral copies of & —ﬁ cen-
tered around [7,0]” and [0, 7]” overlap with the baseband /, while & + 3 centered around
[z, 7]" remain aliasing-free.

Note that there exists no straightforward global strategy such that we recover unaliased ‘
because both spectral copies centered around [7,0]” and [0, 7]7 are aliased with the base-
band /. Dubois et al., however, emphasized that the local image features of the base-
band, /, exhibit a strong directional bias, and therefore either (& — 8)(w — [x,0]7) or
(6 — B)(w —[0,7m)7) is locally recoverable from the sensor data [47]. This observation
motivates nonlinear processing that is locally adaptive — in fact, most existing demosaick-
ing methods can be reexamined from this perspective. Specifically, Figure 9.4 illustrates
the presumed local aliasing pattern. The locally horizontal images suffer from aliasing
between ¢ and (& — f)(w — [r,0]7) while we expect that (& — f3)(w — [0,7]7) remains
relatively intact. Conversely, locally vertical images suffer from aliasing between ¢ and
(6 — B)(w—[0,7]7) while (& — B)(w — [7,0]") is clean. On a sidenote, locally diagonal
image features, which are often ignored by the demosaicking algorithm designs, do not
interfere with (& — 8)(w — [,0]7) and (& — B)(w — [0, 7]7), making the reconstruction of
diagonal features a trivial task.
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FIGURE 94

. . . e
Presumed aliasing structure in local spectra, conditioned local image features of the surrounding. Imag

correspond to: (a) 9 given horizontal features, and (b) § given vertical features. Compare with Figare 9.3d.

Finally, let z(r) be the noisy sensor data,

2(n) = y(n) +&(n) = c1 (m)ax(n) + c3(n) B (n) +x2(n) +€(n), (9.6)

where € oy (0,02). Recall that Fourier transform is a unitary transformation — a spa-
tially white noise in space domain remains uncorrelated in the frequency representation. It
follows that the Fourier transform of a noisy observation 18

t(w) = fw) + 5 (@B =m0

H6— B (0,07 + (@t B)lw— )" +E(w)

In other words, the sensor data is the basebgmd luminance image 14 distort.e(.l by the noise €
and aliasing due to spectral copies of & and B, where &, &, anq B are c'ond1t10na¥ly normsl.
A unified strategy to demosaicking and denoising, the.refore, is to design an estimator th‘f\t
suppresses noise and attenuates aliased components simultaneously. We will see h(')w‘ t ;s
can be accomplished via a spatially-adaptive linear filter whose stgp-band 'conta;ns the
spectral copies of the difference images and pass-band suppresses noise (Section 9.5).

L}

9.4 Wavelet Analysis of CFA Image

In the previous section, we established the inadequacy of taking the globzq approach to
CFA image processing. In this section, we develop a time-frequ@cy analys%s framework
to exploit the local aliasing structures [17]. Specifically, image signals are highly npnsta—
tionary/inhomogeneous and thus an orthogonal filterbank (or wavelet packet) expansion for

i seful.
sparsely sampled signal would prove use . ‘ _

For simplicity, consider first a one-dimensional signal x : Z — R. A one-level filter

bank structure defined by filters {ho,h1, fo, f1} is shown in Figure 9.5. Itis a line.a¥ tranI:—
formation composed of convolution filters and decimators. The channel containing the
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h] ¢ Wl(n) T fl

FIGURE 9.5

One-level filterbank structure.

low—f.reguency components is often called approximation (denoted w(n)), and the other

contammg the high-frequency components is referred to as the detail (denoted w¥ (n)). The

dechp051tion can be nested recursively to gain more precision in frequency. The approxi-

;nanop and detail coefficients from one-level decomposition can be analyzed in the Fourier
omain as:

ax 1/a . 2
(@) =3 (h(9)2(9) +h (g - £(8 ) ).
where i € {0,1}. With a careful choice of filters {ho,h1, fo, f1}, the original signal, x(n)
can pe recovered exactly from the filterbank coefficients wo(n) and w}(n). To see this
consider the reconstruction of one-level filterbank, as in Figure 9.5. The transfer functior;

of the system (or the reconstructed signal x™*¢(n)) has the following form in the frequenc
domain: ’

(@) = fo(@)i520) + fi (o)1 20)

(o(@)io(0—m)+ fi (@i (@ - 7)) (0 7).

A In other words, the output is a linear combination of the filtered versions of the signal
#(®) and a frequency-modulated signal £(@ — 7). The structure in Figure 9.5 is called a
perfect reconstruction filterbank if

A fOA(w)ilo(w) + fi(@)h () =2
Jo(@)ho(@ = 1)+ fi (@)l (@~ 7) = 0.

The filters corresponding to £(®) constitute a constant, whereas the filters corresponding
to the aliased version are effectively a zero.

A large body of literature exists on designing a set of filters {9, A, f;, f1} that comprise
a perfect reconstruction filterbank [48]. For example, wavelet packets belong to a class
of filterbanks arising from the factorizing filters satisfying the Nyquist condition (Smith-
Barnwell [48]). In this case, the following are met by construction:

(@) = —e " fo(—w — 1)

Jol@) = hi(w—n) 9.7)
Si(@) = —hy(w - 7).

Color Filter Array Image Analysis for Joint Demosaicking and Denoising 251

In other words, hy is a time-shifted, time-reversed, and frequency-modulated version of
ho; and fo and f) are time-reversed versions of hy and hi, respectively. Derivation of
these filters is beyond of the scope of this chapter, and interested readers are referred to

Reference [48] for details.
Define modulated signal and subsampled signal of x(n), respectively, as

xm(l’l) = (~1)”x(n)
xs(n) = %(x(n) +xm(n)) = {’5(”) iz; Z:;Znnr_l

To derive an explicit filterbank representation of x;(n), we are interested in characterizing
the relationship between filterbank coefficients of x(n) and x,,(n). Let wy"(n) and w("(n)
be the approximation and detail coefficients of the one-level filterbank decomposition of
(—1)"x(n). Then substituting into Equation 9.7 we obtain

(o) = 5 (ho (9)2(8 — 1) +ho (9 1) £(9))

where m is an odd integer, and * denotes the complex conjugation. A subtle but important
detail of the equations above is that if the approximation and detail coefficients of x(n)
were computed using ho(—n —m) and h;(—n — m) instead of hy(n) and h;(n), these co-
efficients behave exactly like the detail (w)"(n)) and approximation (wy"(n)) coefficients
for (—1)"x(n), respectively (note the reversed ordering of detail and approximation). It is
straightforward to verify that if {ho(n),h;(n)} comprise perfect reconstruction filterbank,
then {ho(—n—m),hi(—n—m)} constitute a legitimate perfect reconstruction filterbank as
well (we will refer to the latter as the time-reversed filterbank). Reversal of coefficients is
illustrated in Figure 9.6 — the systems in Figure 9.6a and Figure 9.6b are equivalent.
Restricting our attention to the Haar decomposition for the rest of discussion and fixing
m = 1, we have that hp(n) = ho(—n— 1) and h(n) = —h;(—n — 1) and the approximation
coefficient of (—1)"x(n) is exactly equal to the detail coefficient of x(n) by construction,
and vice-versa — i.e., wy"(n) = wj(n) and wy"(n) = wi(n). It follows that the multi-
level filterbank decomposition of (—1)"x(n) is equivalent to the time-reversed filterbank
decomposition of x(n), but with the reversed ordering of low-to-high frequency coefficients.
This reversed-order filterbank can be used to derive the filterbank representation of x,(n).
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FIGURE 9.6

Two equivalent filterbanks for x,,(n) = (—1)"x(n): (a) filterbank transform of Xm» (b) reversed-order filterbank

transform of x. Here, * indicates time-reversed filter coefficients.

Specifically, let wy’(n) and wy’ (n) be the approximation and detail coefficients of the one-
level filterbank decomposition of x,(n). Then

w5 () = %) ) = 3 )+ () = £ () + i )
Wy (n) = w20 () = %(w;f(n) +wi(n)) = %(W’l‘(n) +wi(n)) = wl (n).

Now, update the definition of w; to mean the i-th subband of (I + 1)-level filterbank
decomposition. Then by recursion, we have a general form

W) =

(wi(n)+ wi_i(n)). (9.8)
Also see Figure 9.7. Equation 9.8 should not come as a surprise, as it is analogous to
the Fourier domain aliasing where the high frequency component is summed to the low.
Similar analysis for x, can be performed for nonHaar decompositions, but omitted here for
simplicity.

Extending to two-dimensional signals, let us show the decomposition of CFA image in
the separable wavelet packet domain. Let w!(n), wi(n), wf (n) be the filterbank coefficients
corresponding to ¢(n), a(n), B(n), respectively, where i = lio,ir]T € {0,1,...,1}? indexes
the horizontal and the vertical filterbank channels, respectively. As before, assume without
loss of generality that ¢(0,0) = [1,0,0]”. In order to apply the filterbank analysis to the
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FIGURE 9.7
Two equivalent filterbanks for x; = ':lz()( + X ); up to multiplicative constant 2: (a) filterbank transform of x;,

and (b) ordinary and reversed-order filterbank transform of x. Here, we assume the Haar decomposition.
sensor data, we re-write y(n) in the following manner:
y(n) = x2(n) +cr(n)a(n) +c3(n)B(n)
=xo(n)+ (14 (=) +(=1)" +(-1)
7 0+nl
{1yt et o) 2,
and its corresponding filterbank representation:
04
w;(n) = wi(n)+ (fo(”) +wiy iy () + Wi—ig i) (1) FW(i—ig 1-i)) ("))
1 B 8 )
T3 (Wlﬁ () =Wl 1y (1) = Wiy i) () Wiy (1)

1
= W§ (n) + 4 (W&)J—i]) (n) + ngimh) () + w?;—ioe[‘il)(n))

1 B
Z (—ngl—il)(n) - wgui(),il)(n) +w(1_i0'17’.1)(n)> ’

. . . é .
where the minus signs in some wP terms occur due to translation in space, dgd w(n) is
the filterbank coefficients of the signal in Equation 9.5. The globally bandhmlteofiness of
difference images, as argued in the previous section, allows us to conclude that w; (n)=0

B (n) =0, Vip > [ or iy > I for some I. The above simplifies to a form that reveals the

and w;
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energy compaction structure within CFA image:

wh(m)+ (wl_, ) (m) = W[;/*io,il (m) /4 if1—io < i< 1
W) ~ whm)+ (Wl () =wi _ (m)) /4 ifig <l 1—iy <1 ©9)
' i)+ (Wi_o o ()Wl ) /4 it T —io < B 1—iy <1 ‘
wé(n) otherwise

Recall Equation 9.2 and that the filterbank transforms with appropriate choices of filters
constitute a unitary transform. Thus, w}(r) = w} (r) + w# (r), providing

i)+ (Wi o (m) =Wl (1)) /4-+wE (m) if1—ig <1l iy <1
wi(n) ~ wi(n) + (wfl‘.o’liil)(n) ~w(i0’1_l.1)(n))/4+wf(n) ifip<l,I—ip<I
i wh(m)+ (8, () +WfHOM)(n))/4+ wE(n) ifI—ig <l 1—iy<I
wh(n) +wt (n) otherwise,

(9.10)
where w{ 4 (0,62) is a filterbank transform of €(n). In other words, the filterbank
transformation of noisy sensor data w? is the baseband luminance coefficient w distorted by
the noise w? and aliasing due to reversed-order filterbank coefficients w® and w®, where w?,
w®, and wP are (conditionally) normal. A unified strategy to demosaicking and denoising,
therefore, is to design an estimator that estimates w’, w®, and wP from the mixture of w*,
w2, wh_and we. We will see how this can be accomplished in Section 9.7.

Lastly, we remind the readers that Equation 9.10 can be generalized to any filterbanks

that satisfy Equation 9.7 using time-reversed filter coefficients for hg and h;. However,

Haar wavelets are used exclusively in this chapter to simplify the notation.

9.5 Constrained Filtering

In this section, we motivate an approach to joint demosaicking and denoising using well-
understood DSP machineries [40]. Recall Equations 9.3 and 9.4. We are interested in
estimating x(n) given z(-). It is worth noting that even if z(n) for some r corresponds to an
observation of a red pixel x) (r), for example, z(r) does not suffice as an estimate of x; (n)
(unlike the pure demosaicking problems) because it is contaminated by noise.

We begin by highlighting monochromatic image denoising methods that operate by tak-
ing a linear combination of neighboring pixels. These methods include bilateral filters
[28], principal components [31], and total least squares based methods [32], where the lin-
ear weights adapt to the local image features. Transform-based shrinkage and threshold
methods can also be re-interpreted as spatially-varying linear estimators, because there ex-
ists a linear combination of neighboring pixels that is equivalent to shrinkage of transform
coefficients. In the Bayesian estimation framework, the linearity of estimation is (condi-
tionally) true for (a mixture of) normally distributed transform coefficients. In any case, the
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Jocally adaptive linear estimator, X, takes the general form:

)= Y glnm)z(n—m).

men(n)

here z(n) is the noisy version of x(n), g(n,m)is the spatially-adaptive linear weight§, eﬁld
V;lle summation is over 7(n), a local neighborhood of pixels cente.red around n. Typically,
i;,/e choose g(n,m) such that it solves the least-squares minimization problem (though not

necessarily 132D),

rrlginE]]x(n)—xeS‘(n)H2. (9.11)

In this section, we will show how the estimator in the above form can be modiﬁed S(\ilch
that the linear weights can be used to simultaneously interpolgte an.d denoise CFA ata;
[40]. Let x**(n) be an estimate of ideal color image x(n) by taking a linear combination o

noisy sensor data z(n). That is,

©iny=Y, gln,m)z(n—m), (9.12)
memn(n)

R3 is a spatially-adaptive linear weight. o
th: gi( (’2 ,mm))ecorrespong to th}e’: linear weight for est'imating xg. In the follo]\::vmgt(ii;;cgsé
sion, we focus on the estimation of xp(n) via the des1gn. of g»(n,-) because ﬁuad " ﬂ.le
already assumes x2 (n) as its baseband. The results gchleved he.re a'Lre gener? 1269 o he
estimation of x;(n) and x3(n) at the end of this section. Substituting Equation 5.

Equation 9.12,

Sy = Y, g(nm)z(n—m) (9.13)
memn(n)
= Y (solnm)(xaln—m)+eln—m)
men(n)

tgo(n,m)(ci(n—m)a(n—m) +c3(n—m)B(n —m))).

The first term, ¥, g2 (1,m)[x2(n —m) + g(n—m)] represents. an ordinary r;inoch;onzgﬁi
image denoising. That is, g2(+,-) operates on the noisy version of x2(+). The ;}i ;at o
involving ct(-) and B(-) also motivates the need for further restricting g2(-,-) st
is attenuated. .

1at}reor ;iilgrifp?itsh this task, recall that ¢ (n)o(n) and ¢ (n)B(n) oceupy fr;clluencyitrlelgslt(())n%
around w = {(0,0), (0, 7), (x,0), (7, 7m)}. Let us consider a class gf lmea'rf hter;\:‘; ' Coefg_
bands near {(0,0),(0,),(%,0), (m,m)} (i.e., band-pass). In particular, if t ;3 et coc
cients corresponding to red and blue samples in CFA sum to zero, respectively, ,

Z g2(”7m)cl(n —m) =0

men(n) (9.14)
Y g(n,m)c3(n—m)=0,

men(n)
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and Wlth. a ﬁnitg spgtial support on g, (-,m), we can safely assume that the frequency com-
ponents in thf{ vicinity of {(0,0),(0,7),(m,0),(m, )} are attenuated as well (because g, ig
a linear combination of cosines in the Fourier domain).

If the restriction .in Equation 9.14 holds true, then the estimator in Equation 9.13 reduceg
to a monochromatic image denoising problem — that is, x5* = Y, g2(n,m)[x2(n — m) +
?(n —m)]. Tl.lerefore, the underlying strategy for deriving a joint demosaicking and denois-
ing operator is to solve a constrained linear estimation problem. In other words, instead of
Equation 9.11, solve ’ °

2
J =min E ||x2(n) — Z’( g(n,m)[x,(n—m)+e(n—m)) (9.15)
men(n)
subject to Zgz(n,m)cl(n —m) = Zgz(n,m)q(n —m)=0

Conveniently, this optimization problem allows us to pretend as though we are designing a
monochromatic image denoising method. However, the constraints on the filter coefficients
e?iure tglat J remains a gon approximation to the residual of the actual problem, ||x;(r) —
x5 (n) I .. Note that Equation 9.14 does not imply Y, g2(n,m)c2(n —m) = 0. Instead, the
?ontr1but10ns from x; and x3 to the estimation of x, are limited to the frequency com on,ent
in the band-pass region, whereas the contributions from x; are unrestricted. P S
In many cases, the existing image denoising techniques naturally extend to simultane-
ously solving the demosaicking and denoising problems. Let ¥ (and similarly €,7,2) be a
re-arrangement of {x(n —m)|m € n(n)} into a vector form. Then least-squares s’01)11tion to
Equation 9.11 often involves an inner product of the form x*'(n) = g/ ((¥ + €), where

Gis=E[F+8)@+8)7] E[@+8)xn)]. (9.16)

T.h'e inner product occurs often in Bayesian estimators, when the prior on the data are (con-
dlthI-lally) normally distributed (e.g., Laplace, Student’s t, Gaussian mixture). If this prior
on x is defined in the linear transform domain (such as on the wavelet coefficients), then the
equivalent second-order statistics in the pixel domain are simply a linear transforr’nation of
the statistics in the transform domain.

Let.M = |n(n)| be the size of the neighborhood, n(n). The band-pass constraint in
Equation 9.14 may be imposed by asserting that § € RM lives in a lower-dimensional sub-
space, span{v € RM|3T¢; = ¥T¢3 = 0}, or § = Gs, where G € RM*¥~2 i5 an orthogonal
matrix whose column vectors span this subspace. Then the constrained LS problem in
Equation 9.15 can be rewritten as ’

J = minE 1% - g [+ 8| = min £ % —sTGT %+ 8| 9.17)

It is eas i i g
y to verify that the solution to the above has the form x5 (r) = gL, (7, where

ZoLs = G[GTE (B +8)(%+8)] G} E[G(% + ) x(n)]. (9.18)

I;Ilote that Equations 9.17 and 9.18 are minor alterations to Equations 9.11 and 9.16 using
the same second-order statistics, respectively, and thus it is a straightforward exercise to
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|everage existing monochromatic image denoising methods to a joint demosaicking and

denoising scheme.
In order to design spatially adaptive filters similar to Equation 9.18 for estimating x; and

x3, we see that Equation 9.3 can be written alternatively as

y(1) = ca(m) o (m) — x1(m)] + c3(m) s (m) —x1 ()] +x1(n)
— ¢y ()1 (1) — x3(m)] + ca(m) [x2 () — x3(m)] +x3(n).

It follows that the appropriate constraints on filter coefficients g1 (-,-) and g3(-,-) are

Z gi(n,m)ca(n—m) =0, Z g1(n,m)cs(n—m)=0

memn(n) méen(n)
Z g3(n,m)ci(n—m) =0, Z g3(n,m)ca(n —m) =0.
memn(n) men(n)
R

9.6 Missing Data

The statistical modelling of image signals in a linear transform domain is primarily mo-
tivated by the correlation structures that exist within the transform coefficients of image
signals. These models, which require a complete observation of image data, are not eas-
ily generalizable to the digital camera context, as the observation of color image data is
incomplete at the sensor interface. That is, processing with missing or incomplete pixels
is difficult because a linear transformation takes a linear combination of the pixel values,
and thus all of the noisy transform coefficients are unobserved. Yet, it is still convenient or
desirable to apply the sophisticated statistical modelling techniques even when none of the
transform coefficients are observable.

This section explicitly addresses the issue of combining the treatment of missing data
and the wavelet-based modeling [49]. Bayesian hierarchical modelling is used to capture
the second-order statistics in the transform domain. We assume a general model form and
couple the EM algorithm framework with the Bayesian models to estimate the hyper- and
nuisance parameters via the marginal likelihood; that is, we adopt the empirical partial
Bayes approach. Within this framework, problems with missing pixels or pixel compo-
nents, and hence unobservable wavelet coefficients, are handled simultaneously with image
denoising.

In order to extend the complete image modelling strategy to incomplete data, let w} (n) =
W (), Wi (n), W}’ (n)]" correspond to wavelet coefficients corresponding to xy,x2,x3 at i-
th level, and assume that

wx(n) 1’1\51 JV(O, 2,)

1

Then the distribution of the neighboring pixel values is also jointly normal, as linear trans-
formation of a multivariate normal vector is also normal. Because the wavelet transform is

unitary,

wEEe (n) [wE (m) K A (WF (), G2
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To summarize, @ = {X;, 62} are the hyper- and nuisance parameters, respectively.

If the 6 is known, the regression of the missing pixels on the known clean pixel-
component measurements y(n), E[x(n)|y(n),0)], serves as a demosaicking method baseq
on the LS estimator and has a straightforward implementation. Conditioned on the incom-

plete and noisy measurement of pixel-components z(n), Ex(n)|z(n),6], is an interpolateq
and denoised image signal, where

x(n) = Ele(n) z(n), 6] = E[Efx(m)|y(m), 2(n), 0] (n). 6]

The nested expectation operator has an intuitive interpretation: the inner expectation

E [x(r.z){y(n),z(n), 0] = E[x(n)|y(n),6], is an interpolator, and the outer expectation is the
denoiser. Conversely, the same formula can equivalently be written as:

<) = Elx(n) z(n), 0] = E [Ele(m) (x + €)(n),2(n). 0] (). 0],

yvhere the inner expectation operator, E[x(n)|(x + €)(n),z(n),0] = E[x(n)|(x + €)(n) 0]
is a denoiser, and the outer expectation is the interpolator. Conditioned on 6, thereforé a
design of simultaneous demosaicking and denoising method is straightforward. ,

The posterior mean estimate, x*, is sensitive to the choice of parameters 8; and given
only a subset of the noisy pixel components z(n), we are left with estimating 6 from the
data 'Wl'len the wavelet coefficients are not observable. In particular, we solve for the 6 that
maximizes the marginfll log-likelihood log p(z|@), and estimate x as its posterior mean con-
dlthneq on 6 (where 6 is obtained from the maximal likelihood estimate above). The direct
maxgmzation of log p(z]@) is very difficult because of the missing pixel values. The EM
algorithm circumvents this problem by iteratively maximizing the much easier augmented-
data log-likelihood, log p(x, €|0), where {x, €} are the augmented data.

Given the [r]-th iterate hyper- and nuisance parameter estimate, OV — {Zl[tJ O'ZM} the
[t + 1]-st iteration of the EM algorithm first calls for ’ T

0 (0;0[’]) =F [logp(x, €|0) '1,0[’]] :
A celebrated result of EM algorithm [50] states that
log p(210) ~log p(zl6¥) > 0 (6:61") - 0 (61; 61,

where lf)g p(2]0) is the log-likelihood of  based on the actual observed data, z(n). Thus
the choice of @ that maximizes Q(B;B[’]), that is, the next iterate Q[ +”, increases our ob-

jective function:
0[’+”> >logp <z 0[’]> )

Consequently, maxim‘izing Q(B;O[’]) is the same as maximizing log p(z]0), but with
al[lt]gmented—c'iata sufficient statistics. Given [t]-th iterate hyper- and nuisance parameters
6", the explicit formula for Q(8); 6!) is in the closed form:

Q (0;0M> =E [Iogp(x,qo) ’Z’g[f]J

=LE [1og p(wF () 22) + log p(w§ (m)] 02)

log p (z

z,OMJ . (9.19)
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It is then easy to verify that the maximizer of Q(O;B[’]) is the weighted least squares
estimate [50]:

B = LE [ (n) e 61

2,00 } , (9.20)

2 g LE [ v ()
U ]

i,n

where N; is the number of wavelets samples in the i-th subband. In each iteration, the
computation of the sufficient statistics in Equation 9.19 is often called expectation- or
E-step, whereas the process of carrying out Equation 9.20 to find 0l+1 is referred to
as maximization- or M-step. Carrying out the math to find E[w?*(n)w” (n)|z,6!1] and
E[wsT (n)w$(n)|z,0%] in E-step is rather cumbersome, and the derivation is omitted in this

13
chapter. Interested readers are encouraged to refer to References [49] and [50] for more

details.

As was the case in the previous section, it is worth noting that wavelet coefficients are
often modelled with heavy-tailed distributions (e.g., Laplace, Student’s t, Gaussian mix-
ture). Distributions belonging to an exponential family can be rewritten as a scalar mixture
of Gaussian random variables, and thus are conditionally Gaussian. The EM algorithm
developed above is therefore generalized to a heavy-tailed distribution via the integration
over the mixture variable in the posterior sense.

9,7 Filterbank Coefficient Estimation

Computational efficiency and elegance of shrinkage or thresholding estimators and the-
oretical properties amenable to spatial inhomogeneities have contributed to the immense
popularity of wavelet-based methods for image denoising. However, typical denoising
techniques assume complete grayscale or color image observation, and hence must be ap-
plied after demosaicking. In the previous section we showed that it is possible to model
noisy color images in the wavelet domain directly by taking advantage of the statistical
framework of missing data. However, the computational burden of doing so is severe, and
the energy compaction arguments put forth in Section 9.4 suggest an alternative approach
by choosing to work with wavelet coefficients of the noisy subsampled data directly. In this
section, we propose necessary changes to a complete image wavelet coefficient model such
that it is amenable to the direct manipulation of w; (n), [17].

Given that the difference images are sufficiently low-pass, simplification in Equation 9.9
reveals that there is a surprising degree of similarity between w? () and wy(n). Specifi-
cally, w) (n) ~ w (n) for the majority of subbands — the exceptions are the subbands that
are normally considered high-frequency, which now contain a strong mixture of the low-
frequency (or scaling) coefficients from the difference images, & and . Operating under
the premises that the filterbank transform decomposes image signals such that subbands are
approximately uncorrelated from each other, the posterior mean estimate of wf (n) takes the
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form
(witn) = £ [wf(n)f wf:{ ~E [wf(n)‘wvasJ

for al.l subbands that meet the w; (n) ~ wf (n) approximation. Since the wavelet shrinkage
function f: R — R, f(wi*é) = E (wf ()W) is a well studied problem in the literature
we can leverage existing image denoising methods to the CFA image context. In a simplej
special case where wf(n) ~ ¥ (0, o7;), the L? estimator is

2
O
fw; o
Y o} +o? i)

However, in the subbands that contain a mixture of wf w% wP and wé
) i° [

| . ! ! ' ;> We must proceed
with caution. Let w@(n) ~ .4 (0, 0 i)» Wi () ~ A (0, o; ;). Consider the case such that

lp>1—1Iand iy <[, and definej = (o, 1 —i1), k= (I—ip, I — i1). Then wf(n),wj?(n),wi(n)
are highly correlated due to their common components in their mixture, w* and wb where
./ . . ’ ! i’

i' = (I —ip,i1). Thus the L2 estimates for wi(n) wk(n),wt (n) are l l

e
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Once {w! e, {w@}est) {wlB 1t are computed Vi,n as above, then x*'(nr) is calculated by

taking the inverse filterbank transform of {w; }ost, {w&}est, {wtﬁ } to find the estimates of
{(n),a(n), B(n), which in turn is used to solve x**'.

Practically, it should be noted that the actual implementation of this method should in-
clude cycle-spinning, a standard technique in filterbank and wavelet literature whereby a
linear space-variant system can be transformed into linear space-invariant system via av-
eraging over all possible spacial shifts. As with the previous sections, we note that the
estimator naturally extends to multivariate normal or heavy-tailed distributions.

9.8 Conclusion

Given the inadequacies and model inconsistencies of treating the image denoising and
demosaicking problem independently, we focused on the analysis and the techniques for
processing (see Figure 9.8 and Figure 9.9) subsampled data. In particular, the Fourier and
filterbank (wavelet-packet) analyses reveal a systematic aliasing structure in CFA images,
where the observed data consists of a mixture of baseband luminance signal, spectrally-
shifted difference images, and noise. The same analysis motivates a unified strategy to
address demosaicking and denoising estimation problems by interpreting the sensor data as
luminance image distorted by noise with some degrees of structure.

Conditioned on the complete observation image model of the digital camera designer’s
choosing, we proposed three design regimes for estimating the complete noise-free im-
age signal of interest given a set of incomplete observations of pixel components that are
corrupted by noise. First, well-understood DSP machineries were employed to design a
spatially-adaptive linear filter whose stop-band contains the spectral copies of the differ-
ence images, and the pass-band suppresses noise. Second, coupling of the EM algorithm
framework with the Bayesian models to estimate the hyper- and nuisance parameters via
the marginal likelihood, and in turn, adopting the empirical partial Bayes approach for
estimating the ideal color image data allowed us to apply heavy-tailed priors to the unob-
servable wavelet coefficients. Third, exploiting the reversed-order filterbank structure, a
regression of luminance and difference image filterbank coefficients on the CFA image fil-
terbank coefficients were simplified. The above estimation techniques were derived using
second-order statistics for complete observation models.
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(b) color version of simulated noisy sensor data, (c) estimated with demosaicking method in Reference [7] and
denoising method in [23], (d) estimated with the approach in Section 9.5, (¢) estimated with the approach in
Section 9.6, and (f) estimated with the approach in Section 9.7.
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Reconstruction of the Lena image given a simulated noisy sensor data: (a) noise-free original color image, (b)
color version of simulated noisy sensor data, (c) estimated with demosaicking method in Reference {7] and
denoising method in [23], (d) estimated with the approach in Section 9.5, (e) estimated with the approach in
Section 9.6, and (f) estimated with the approach in Section 9.7.
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