405 research outputs found

    Unsupervised Retinal Blood Vessel Segmentation Technique using pdAPSO and Difference Image Methods for Detection of Diabetic Retinopathy

    Get PDF
    Retinal vessel segmentation is a practice that has the potential of enhancing accuracy in the diagnosis and timely prevention of illnesses that are related to blood vessels. Acute damage to the retinal vessel has been identified to be the main cause of blindness and impaired vision. A timely detection and control of these illnesses can greatly decrease the number of loss of sight cases. However, the manual protocol for such detection is laborious and although autonomous methods have been recommended, the accuracy of these methods is often unreliable. We propose the utilization of the Primal-Dual Asynchronous Particle Swarm Optimisation (pdAPSO) and differential image methods in addressing the drawbacks associated with segmentation of retinal vessels in this study. The fusion of pdAPSO and differential image (which focuses on the median filter) produced a significant enhancement in the segmentation of huge and miniscule retinal vessels. In addition, the method also decreased erroneous detection near the edge of the retinal (that is not sensitive to light). The results are favourable for the median filter when compared to mean filter and Gaussian filter. The accuracy rate of 0.9559 (with a specificity of sensitivity rate of 0.9855), and a sensitivity rate of 0.7218 were obtained when tested using the Digital Retinal Images for Vessel Extraction database. The above result is a pointer that our approach will help in detecting and diagnosing the damage done to the retinal and thereby preventing loss of sight

    Exploring Deep Learning Techniques for Glaucoma Detection: A Comprehensive Review

    Full text link
    Glaucoma is one of the primary causes of vision loss around the world, necessitating accurate and efficient detection methods. Traditional manual detection approaches have limitations in terms of cost, time, and subjectivity. Recent developments in deep learning approaches demonstrate potential in automating glaucoma detection by detecting relevant features from retinal fundus images. This article provides a comprehensive overview of cutting-edge deep learning methods used for the segmentation, classification, and detection of glaucoma. By analyzing recent studies, the effectiveness and limitations of these techniques are evaluated, key findings are highlighted, and potential areas for further research are identified. The use of deep learning algorithms may significantly improve the efficacy, usefulness, and accuracy of glaucoma detection. The findings from this research contribute to the ongoing advancements in automated glaucoma detection and have implications for improving patient outcomes and reducing the global burden of glaucoma

    Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models

    Get PDF
    In this research, we propose Particle Swarm Optimization (PSO)-enhanced ensemble deep neural networks for optic disc (OD) segmentation using retinal images. An improved PSO algorithm with six search mechanisms to diversify the search process is introduced. It consists of an accelerated super-ellipse action, a refined super-ellipse operation, a modified PSO operation, a random leader-based search operation, an average leader-based search operation and a spherical random walk mechanism for swarm leader enhancement. Owing to the superior segmentation capabilities of Mask R-CNN, transfer learning with a PSO-based hyper-parameter identification method is employed to generate the fine-tuned segmenters for OD segmentation. Specifically, we optimize the learning parameters, which include the learning rate and momentum of the transfer learning process, using the proposed PSO algorithm. To overcome the bias of single networks, an ensemble segmentation model is constructed. It incorporates the results of distinctive base segmenters using a pixel-level majority voting mechanism to generate the final segmentation outcome. The proposed ensemble network is evaluated using the Messidor and Drions data sets and is found to significantly outperform other deep ensemble networks and hybrid ensemble clustering models that are incorporated with both the original and state-of-the-art PSO variants. Additionally, the proposed method statistically outperforms existing studies on OD segmentation and other search methods for solving diverse unimodal and multimodal benchmark optimization functions and the detection of Diabetic Macular Edema

    Medical Image Classification Using Transfer Learning and Network Pruning Algorithms

    Get PDF
    Deep neural networks show great advancement in recent decades in classifying medical images (such as CTscans) with high precision to aid disease diagnosis. However, the training of deep neural networks requires significant sample sizes for learning enriched discriminative spatial features. Building a high quality dataset large enough to satisfy model training requirement is a challenging task due to limited disease sample cases, and various data privacy constraints. Therefore in this research, we perform medical image classification using transfer learning based on several well-known deep networks, i.e. GoogLeNet, Resnet and EfficientNet. To tackle data sparsity issues, a Wasserstein Generative Adversarial Network (WGAN) is used to generate new medical image samples to increase the numbers of training instances of the minority classes. The transfer learning process itself also allows the building of strong classifiers by transferring knowledge from the pre-trained image domain to a new medical domain using a small sample size. Moreover, the lottery ticket hypothesis is also used to prune each transfer learning network trained using the new target image data sets. Specifically, the L1 norm unstructured pruning technique is used for network reduction. Hyper-parameter finetuning is also performed to identify optimal settings of key network hyper-parameters such as learning rate, batch size and weight decay. A total of 20 trials are used for optimal hyper-parameter selection. Evaluated using multi-class lung X-ray images for pneumonia conditions and brain tumor CT-scans, the fine-tuned EfficientNet model obtains the best brain tumor classification accuracy rate of 96% and a fine-tuned GoogLeNet model with pruning has the highest pneumonia classification accuracy rate of 81.5%.<br/

    Performance Analysis of UNet and Variants for Medical Image Segmentation

    Full text link
    Medical imaging plays a crucial role in modern healthcare by providing non-invasive visualisation of internal structures and abnormalities, enabling early disease detection, accurate diagnosis, and treatment planning. This study aims to explore the application of deep learning models, particularly focusing on the UNet architecture and its variants, in medical image segmentation. We seek to evaluate the performance of these models across various challenging medical image segmentation tasks, addressing issues such as image normalization, resizing, architecture choices, loss function design, and hyperparameter tuning. The findings reveal that the standard UNet, when extended with a deep network layer, is a proficient medical image segmentation model, while the Res-UNet and Attention Res-UNet architectures demonstrate smoother convergence and superior performance, particularly when handling fine image details. The study also addresses the challenge of high class imbalance through careful preprocessing and loss function definitions. We anticipate that the results of this study will provide useful insights for researchers seeking to apply these models to new medical imaging problems and offer guidance and best practices for their implementation

    Automatic analysis of retinal images to aid in the diagnosis and grading of diabetic retinopathy

    Get PDF
    Diabetic retinopathy (DR) is the most common complication of diabetes mellitus and one of the leading causes of preventable blindness in the adult working population. Visual loss can be prevented from the early stages of DR, when the treatments are effective. Therefore, early diagnosis is paramount. However, DR may be clinically asymptomatic until the advanced stage, when vision is already affected and treatment may become difficult. For this reason, diabetic patients should undergo regular eye examinations through screening programs. Traditionally, DR screening programs are run by trained specialists through visual inspection of the retinal images. However, this manual analysis is time consuming and expensive. With the increasing incidence of diabetes and the limited number of clinicians and sanitary resources, the early detection of DR becomes non-viable. For this reason, computed-aided diagnosis (CAD) systems are required to assist specialists for a fast, reliable diagnosis, allowing to reduce the workload and the associated costs. We hypothesize that the application of novel, automatic algorithms for fundus image analysis could contribute to the early diagnosis of DR. Consequently, the main objective of the present Doctoral Thesis is to study, design and develop novel methods based on the automatic analysis of fundus images to aid in the screening, diagnosis, and treatment of DR. In order to achieve the main goal, we built a private database and used five retinal public databases: DRIMDB, DIARETDB1, DRIVE, Messidor and Kaggle. The stages of fundus image processing covered in this Thesis are: retinal image quality assessment (RIQA), the location of the optic disc (OD) and the fovea, the segmentation of RLs and EXs, and the DR severity grading. RIQA was studied with two different approaches. The first approach was based on the combination of novel, global features. Results achieved 91.46% accuracy, 92.04% sensitivity, and 87.92% specificity using the private database. We developed a second approach aimed at RIQA based on deep learning. We achieved 95.29% accuracy with the private database and 99.48% accuracy with the DRIMDB database. The location of the OD and the fovea was performed using a combination of saliency maps. The proposed methods were evaluated over the private database and the public databases DRIVE, DIARETDB1 and Messidor. For the OD, we achieved 100% accuracy for all databases except Messidor (99.50%). As for the fovea location, we also reached 100% accuracy for all databases except Messidor (99.67%). The joint segmentation of RLs and EXs was accomplished by decomposing the fundus image into layers. Results were computed per pixel and per image. Using the private database, 88.34% per-image accuracy (ACCi) was reached for the RL detection and 95.41% ACCi for EX detection. An additional method was proposed for the segmentation of RLs based on superpixels. Evaluating this method with the private database, we obtained 84.45% ACCi. Results were validated using the DIARETDB1 database. Finally, we proposed a deep learning framework for the automatic DR severity grading. The method was based on a novel attention mechanism which performs a separate attention of the dark and the bright structures of the retina. The Kaggle DR detection dataset was used for development and validation. The International Clinical DR Scale was considered, which is made up of 5 DR severity levels. Classification results for all classes achieved 83.70% accuracy and a Quadratic Weighted Kappa of 0.78. The methods proposed in this Doctoral Thesis form a complete, automatic DR screening system, contributing to aid in the early detection of DR. In this way, diabetic patients could receive better attention for their ocular health avoiding vision loss. In addition, the workload of specialists could be relieved while healthcare costs are reduced.La retinopatía diabética (RD) es la complicación más común de la diabetes mellitus y una de las principales causas de ceguera prevenible en la población activa adulta. El diagnóstico precoz es primordial para prevenir la pérdida visual. Sin embargo, la RD es clínicamente asintomática hasta etapas avanzadas, cuando la visión ya está afectada. Por eso, los pacientes diabéticos deben someterse a exámenes oftalmológicos periódicos a través de programas de cribado. Tradicionalmente, estos programas están a cargo de especialistas y se basan de la inspección visual de retinografías. Sin embargo, este análisis manual requiere mucho tiempo y es costoso. Con la creciente incidencia de la diabetes y la escasez de recursos sanitarios, la detección precoz de la RD se hace inviable. Por esta razón, se necesitan sistemas de diagnóstico asistido por ordenador (CAD) que ayuden a los especialistas a realizar un diagnóstico rápido y fiable, que permita reducir la carga de trabajo y los costes asociados. El objetivo principal de la presente Tesis Doctoral es estudiar, diseñar y desarrollar nuevos métodos basados en el análisis automático de retinografías para ayudar en el cribado, diagnóstico y tratamiento de la RD. Las etapas estudiadas fueron: la evaluación de la calidad de la imagen retiniana (RIQA), la localización del disco óptico (OD) y la fóvea, la segmentación de RL y EX y la graduación de la severidad de la RD. RIQA se estudió con dos enfoques diferentes. El primer enfoque se basó en la combinación de características globales. Los resultados lograron una precisión del 91,46% utilizando la base de datos privada. El segundo enfoque se basó en aprendizaje profundo. Logramos un 95,29% de precisión con la base de datos privada y un 99,48% con la base de datos DRIMDB. La localización del OD y la fóvea se realizó mediante una combinación de mapas de saliencia. Los métodos propuestos fueron evaluados sobre la base de datos privada y las bases de datos públicas DRIVE, DIARETDB1 y Messidor. Para el OD, logramos una precisión del 100% para todas las bases de datos excepto Messidor (99,50%). En cuanto a la ubicación de la fóvea, también alcanzamos un 100% de precisión para todas las bases de datos excepto Messidor (99,67%). La segmentación conjunta de RL y EX se logró descomponiendo la imagen del fondo de ojo en capas. Utilizando la base de datos privada, se alcanzó un 88,34% de precisión por imagen (ACCi) para la detección de RL y un 95,41% de ACCi para la detección de EX. Se propuso un método adicional para la segmentación de RL basado en superpíxeles. Evaluando este método con la base de datos privada, obtuvimos 84.45% ACCi. Los resultados se validaron utilizando la base de datos DIARETDB1. Finalmente, propusimos un método de aprendizaje profundo para la graduación automática de la gravedad de la DR. El método se basó en un mecanismo de atención. Se utilizó la base de datos Kaggle y la Escala Clínica Internacional de RD (5 niveles de severidad). Los resultados de clasificación para todas las clases alcanzaron una precisión del 83,70% y un Kappa ponderado cuadrático de 0,78. Los métodos propuestos en esta Tesis Doctoral forman un sistema completo y automático de cribado de RD, contribuyendo a ayudar en la detección precoz de la RD. De esta forma, los pacientes diabéticos podrían recibir una mejor atención para su salud ocular evitando la pérdida de visión. Además, se podría aliviar la carga de trabajo de los especialistas al mismo tiempo que se reducen los costes sanitarios.Escuela de DoctoradoDoctorado en Tecnologías de la Información y las Telecomunicacione

    IMPROVED AUTOMATIC DETECTION OF GLAUCOMA USING CUP-TO-DISK RATIO AND HYBRID CLASSIFIERS.

    Get PDF
    Glaucoma is one of the most complicated disorder in human eye that causes permanent vision loss gradually if not detect in early stage. It can damage the optic nerve without any symptoms and warnings. Different automated glaucoma detection systems were developed for analyzing glaucoma at early stage but lacked good accuracy of detection. This paper proposes a novel automated glaucoma detection system which effectively process with digital colour fundus images using hybrid classifiers. The proposed system concentrates on both Cup-to Disk Ratio (CDR) and different features to improve the accuracy of glaucoma. Morphological Hough Transform Algorithm (MHTA) is designed for optic disc segmentation. Intensity based elliptic curve method is used for separation of optic cup effectively. Further feature extraction and CDR value can be estimated. Finally, classification is performed with combination of Naive Bayes Classifier and K Nearest Neighbour (KNN). The proposed system is evaluated by using High Resolution Fundus (HRF) database which outperforms the earlier methods in literature in various performance metrics

    Evolving Ensemble Models for Image Segmentation Using Enhanced Particle Swarm Optimization

    Get PDF
    In this paper, we propose particle swarm optimization (PSO)-enhanced ensemble deep neural networks and hybrid clustering models for skin lesion segmentation. A PSO variant is proposed, which embeds diverse search actions including simulated annealing, levy flight, helix behavior, modified PSO, and differential evolution operations with spiral search coefficients. These search actions work in a cascade manner to not only equip each individual with different search operations throughout the search process but also assign distinctive search actions to different particles simultaneously in every single iteration. The proposed PSO variant is used to optimize the learning hyper-parameters of convolutional neural networks (CNNs) and the cluster centroids of classical Fuzzy C-Means clustering respectively to overcome performance barriers. Ensemble deep networks and hybrid clustering models are subsequently constructed based on the optimized CNN and hybrid clustering segmenters for lesion segmentation. We evaluate the proposed ensemble models using three skin lesion databases, i.e., PH2, ISIC 2017, and Dermofit Image Library, and a blood cancer data set, i.e., ALL-IDB2. The empirical results indicate that our models outperform other hybrid ensemble clustering models combined with advanced PSO variants, as well as state-of-the-art deep networks in the literature for diverse challenging image segmentation tasks
    corecore