12 research outputs found

    Featherweight VeriFast

    Full text link
    VeriFast is a leading research prototype tool for the sound modular verification of safety and correctness properties of single-threaded and multithreaded C and Java programs. It has been used as a vehicle for exploration and validation of novel program verification techniques and for industrial case studies; it has served well at a number of program verification competitions; and it has been used for teaching by multiple teachers independent of the authors. However, until now, while VeriFast's operation has been described informally in a number of publications, and specific verification techniques have been formalized, a clear and precise exposition of how VeriFast works has not yet appeared. In this article we present for the first time a formal definition and soundness proof of a core subset of the VeriFast program verification approach. The exposition aims to be both accessible and rigorous: the text is based on lecture notes for a graduate course on program verification, and it is backed by an executable machine-readable definition and machine-checked soundness proof in Coq

    From Network Interface to Multithreaded Web Applications: A Case Study in Modular Program Verification

    Get PDF
    Many verifications of realistic software systems are monolithic, in the sense that they define single global invariants over complete system state. More modular proof techniques promise to support reuse of component proofs and even reduce the effort required to verify one concrete system, just as modularity simplifies standard software development. This paper reports on one case study applying modular proof techniques in the Coq proof assistant. To our knowledge, it is the first modular verification certifying a system that combines infrastructure with an application of interest to end users. We assume a nonblocking API for managing TCP networking streams, and on top of that we work our way up to certifying multithreaded, database-backed Web applications. Key verified components include a cooperative threading library and an implementation of a domain-specific language for XML processing. We have deployed our case-study system on mobile robots, where it interfaces with off-the-shelf components for sensing, actuation, and control.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293

    From Network Interface to Multithreaded Web Applications: A Case Study in Modular Program Verification

    Get PDF
    Many verifications of realistic software systems are monolithic, in the sense that they define single global invariants over complete system state. More modular proof techniques promise to support reuse of component proofs and even reduce the effort required to verify one concrete system, just as modularity simplifies standard software development. This paper reports on one case study applying modular proof techniques in the Coq proof assistant. To our knowledge, it is the first modular verification certifying a system that combines infrastructure with an application of interest to end users. We assume a nonblocking API for managing TCP networking streams, and on top of that we work our way up to certifying multithreaded, database-backed Web applications. Key verified components include a cooperative threading library and an implementation of a domain-specific language for XML processing. We have deployed our case-study system on mobile robots, where it interfaces with off-the-shelf components for sensing, actuation, and control.National Science Foundation (U.S.) (NSF grant CCF-1253229)United States. Defense Advanced Research Projects Agency (DARPA, agreement number FA8750-12-2-0293

    Symbolic execution proofs for higher order store programs

    Get PDF
    Higher order store programs are programs which store, manipulate and invoke code at runtime. Important examples of higher order store programs include operating system kernels which dynamically load and unload kernel modules. Yet conventional Hoare logics, which provide no means of representing changes to code at runtime, are not applicable to such programs. Recently, however, new logics using nested Hoare triples have addressed this shortcoming. In this paper we describe, from top to bottom, a sound semi-automated verification system for higher order store programs. We give a programming language with higher order store features, define an assertion language with nested triples for specifying such programs, and provide reasoning rules for proving programs correct. We then present in full our algorithms for automatically constructing correctness proofs. In contrast to earlier work, the language also includes ordinary (fixed) procedures and mutable local variables, making it easy to model programs which perform dynamic loading and other higher order store operations. We give an operational semantics for programs and a step-indexed interpretation of assertions, and use these to show soundness of our reasoning rules, which include a deep frame rule which allows more modular proofs. Our automated reasoning algorithms include a scheme for separation logic based symbolic execution of programs, and automated provers for solving various kinds of entailment problems. The latter are presented in the form of sets of derived proof rules which are constrained enough to be read as a proof search algorithm

    Effective interactive proofs for higher-order imperative programs

    No full text

    Algebraic Principles for Program Correctness Tools in Isabelle/HOL

    Get PDF
    This thesis puts forward a flexible and principled approach to the development of construction and verification tools for imperative programs, in which the control flow and the data level are cleanly separated. The approach is inspired by algebraic principles and benefits from an algebraic semantics layer. It is programmed in the Isabelle/HOL interactive theorem prover and yields simple lightweight mathematical components as well as program construction and verification tools that are themselves correct by construction. First, a simple tool is implemented using Kleeene algebra with tests (KAT) for the control flow of while-programs, which is the most compact verification formalism for imperative programs, and their standard relational semantics for the data level. A reference formalisation of KAT in Isabelle/HOL is then presented, providing three different formalisations of tests. The structured comprehensive libraries for these algebras include an algebraic account of Hoare logic for partial correctness. Verification condition generation and program construction rules are based on equational reasoning and supported by powerful Isabelle tactics and automated theorem proving. Second, the tool is expanded to support different programming features and verification methods. A basic program construction tool is developed by adding an operation for the specification statement and one single axiom. To include recursive procedures, KATs are expanded further to quantales with tests, where iteration and the specification statement can be defined explicitly. Additionally, a nondeterministic extension supports the verification of simple concurrent programs. Finally, the approach is also applied to separation logic, where the control-flow is modelled by power series with convolution as separating conjunction. A generic construction lifts resource monoids to assertion and predicate transformer quantales. The data level is captured by concrete store-heap models. These are linked to the algebra by soundness proofs. A number of examples shows the tools at work
    corecore