185 research outputs found

    A differentiated proposal of three dimension i/o performance characterization model focusing on storage environments

    Get PDF
    The I/O bottleneck remains a central issue in high-performance environments. Cloud computing, high-performance computing (HPC) and big data environments share many underneath difficulties to deliver data at a desirable time rate requested by high-performance applications. This increases the possibility of creating bottlenecks throughout the application feeding process by bottom hardware devices located in the storage system layer. In the last years, many researchers have been proposed solutions to improve the I/O architecture considering different approaches. Some of them take advantage of hardware devices while others focus on a sophisticated software approach. However, due to the complexity of dealing with high-performance environments, creating solutions to improve I/O performance in both software and hardware is challenging and gives researchers many opportunities. Classifying these improvements in different dimensions allows researchers to understand how these improvements have been built over the years and how it progresses. In addition, it also allows future efforts to be directed to research topics that have developed at a lower rate, balancing the general development process. This research present a three-dimension characterization model for classifying research works on I/O performance improvements for large scale storage computing facilities. This classification model can also be used as a guideline framework to summarize researches providing an overview of the actual scenario. We also used the proposed model to perform a systematic literature mapping that covered ten years of research on I/O performance improvements in storage environments. This study classified hundreds of distinct researches identifying which were the hardware, software, and storage systems that received more attention over the years, which were the most researches proposals elements and where these elements were evaluated. In order to justify the importance of this model and the development of solutions that targets I/O performance improvements, we evaluated a subset of these improvements using a a real and complete experimentation environment, the Grid5000. Analysis over different scenarios using a synthetic I/O benchmark demonstrates how the throughput and latency parameters behaves when performing different I/O operations using distinct storage technologies and approaches.O gargalo de E/S continua sendo um problema central em ambientes de alto desempenho. Os ambientes de computação em nuvem, computação de alto desempenho (HPC) e big data compartilham muitas dificuldades para fornecer dados em uma taxa de tempo desejável solicitada por aplicações de alto desempenho. Isso aumenta a possibilidade de criar gargalos em todo o processo de alimentação de aplicativos pelos dispositivos de hardware inferiores localizados na camada do sistema de armazenamento. Nos últimos anos, muitos pesquisadores propuseram soluções para melhorar a arquitetura de E/S considerando diferentes abordagens. Alguns deles aproveitam os dispositivos de hardware, enquanto outros se concentram em uma abordagem sofisticada de software. No entanto, devido à complexidade de lidar com ambientes de alto desempenho, criar soluções para melhorar o desempenho de E/S em software e hardware é um desafio e oferece aos pesquisadores muitas oportunidades. A classificação dessas melhorias em diferentes dimensões permite que os pesquisadores entendam como essas melhorias foram construídas ao longo dos anos e como elas progridem. Além disso, também permite que futuros esforços sejam direcionados para tópicos de pesquisa que se desenvolveram em menor proporção, equilibrando o processo geral de desenvolvimento. Esta pesquisa apresenta um modelo de caracterização tridimensional para classificar trabalhos de pesquisa sobre melhorias de desempenho de E/S para instalações de computação de armazenamento em larga escala. Esse modelo de classificação também pode ser usado como uma estrutura de diretrizes para resumir as pesquisas, fornecendo uma visão geral do cenário real. Também usamos o modelo proposto para realizar um mapeamento sistemático da literatura que abrangeu dez anos de pesquisa sobre melhorias no desempenho de E/S em ambientes de armazenamento. Este estudo classificou centenas de pesquisas distintas, identificando quais eram os dispositivos de hardware, software e sistemas de armazenamento que receberam mais atenção ao longo dos anos, quais foram os elementos de proposta mais pesquisados e onde esses elementos foram avaliados. Para justificar a importância desse modelo e o desenvolvimento de soluções que visam melhorias no desempenho de E/S, avaliamos um subconjunto dessas melhorias usando um ambiente de experimentação real e completo, o Grid5000. Análises em cenários diferentes usando um benchmark de E/S sintética demonstra como os parâmetros de vazão e latência se comportam ao executar diferentes operações de E/S usando tecnologias e abordagens distintas de armazenamento

    A cost-efficient QoS-aware analytical model of future software content delivery networks

    Get PDF
    Freelance, part-time, work-at-home, and other flexible jobs are changing the concept of workplace, and bringing information and content exchange problems to companies. Geographically spread corporations may use remote distribution of software and data to attend employees' demands, by exploiting emerging delivery technologies. In this context, cost-efficient software distribution is crucial to allow business evolution and make IT infrastructures more agile. On the other hand, container based virtualization technology is shaping the new trends of software deployment and infrastructure design. We envision current and future enterprise IT management trends evolving towards container based software delivery over Hybrid CDNs. This paper presents a novel cost-efficient QoS aware analytical model and a Hybrid CDN-P2P architecture for enterprise software distribution. The model would allow delivery cost minimization for a wide range of companies, from big multinationals to SMEs, using CDN-P2P distribution under various industrial hypothetical scenarios. Model constraints guarantee acceptable deployment times and keep interchanged content amounts below the bandwidth and storage network limits in our scenarios. Indeed, key model parameters account for network bandwidth, storage limits and rental prices, which are empirically determined from their offered values by the commercial delivery networks KeyCDN, MaxCDN, CDN77 and BunnyCDN. This preliminary study indicates that MaxCDN offers the best cost-QoS trade-off. The model is implemented in the network simulation tool PeerSim, and then applied to diverse testing scenarios by varying company types, number and profile (either, technical or administrative) of employees and the number and size of content requests. Hybrid simulation results show overall economic savings between 5\% and 20\%, compared to just hiring resources from a commercial CDN, while guaranteeing satisfactory QoS levels in terms of deployment times and number of served requests.This work was partially supported by Generalitat de Catalunya under the SGR Program (2017-SGR-962) and the RIS3CAT DRAC Project (001-P-001723). We have also received funding from Ministry of Science and Innovation (Spain) under the project EQC2019-005653-P.Peer ReviewedPostprint (author's final draft

    Cooperative caching for object storage

    Full text link
    Data is increasingly stored in data lakes, vast immutable object stores that can be accessed from anywhere in the data center. By providing low cost and scalable storage, today immutable object-storage based data lakes are used by a wide range of applications with diverse access patterns. Unfortunately, performance can suffer for applications that do not match the access patterns for which the data lake was designed. Moreover, in many of today's (non-hyperscale) data centers, limited bisectional bandwidth will limit data lake performance. Today many computer clusters integrate caches both to address the mismatch between application performance requirements and the capabilities of the shared data lake, and to reduce the demand on the data center network. However, per-cluster caching; i) means the expensive cache resources cannot be shifted between clusters based on demand, ii) makes sharing expensive because data accessed by multiple clusters is independently cached by each of them, and iii) makes it difficult for clusters to grow and shrink if their servers are being used to cache storage. In this dissertation, we present two novel data-center wide cooperative cache architectures, Datacenter-Data-Delivery Network (D3N) and Directory-Based Datacenter-Data-Delivery Network (D4N) that are designed to be part of the data lake itself rather than part of the computer clusters that use it. D3N and D4N distribute caches across the data center to enable data sharing and elasticity of cache resources where requests are transparently directed to nearby cache nodes. They dynamically adapt to changes in access patterns and accelerate workloads while providing the same consistency, trust, availability, and resilience guarantees as the underlying data lake. We nd that exploiting the immutability of object stores significantly reduces the complexity and provides opportunities for cache management strategies that were not feasible for previous cooperative cache systems for le or block-based storage. D3N is a multi-layer cooperative cache that targets workloads with large read-only datasets like big data analytics. It is designed to be easily integrated into existing data lakes with only limited support for write caching of intermediate data, and avoiding any global state by, for example, using consistent hashing for locating blocks and making all caching decisions based purely on local information. Our prototype is performant enough to fully exploit the (5 GB/s read) SSDs and (40, Gbit/s) NICs in our system and improve the runtime of realistic workloads by up to 3x. The simplicity of D3N has enabled us, in collaboration with industry partners, to upstream the two-layer version of D3N into the existing code base of the Ceph object store as a new experimental feature, making it available to the many data lakes around the world based on Ceph. D4N is a directory-based cooperative cache that provides a reliable write tier and a distributed directory that maintains a global state. It explores the use of global state to implement more sophisticated cache management policies and enables application-specific tuning of caching policies to support a wider range of applications than D3N. In contrast to previous cache systems that implement their own mechanism for maintaining dirty data redundantly, D4N re-uses the existing data lake (Ceph) software for implementing a write tier and exploits the semantics of immutable objects to move aged objects to the shared data lake. This design greatly reduces the barrier to adoption and enables D4N to take advantage of sophisticated data lake features such as erasure coding. We demonstrate that D4N is performant enough to saturate the bandwidth of the SSDs, and it automatically adapts replication to the working set of the demands and outperforms the state of art cluster cache Alluxio. While it will be substantially more complicated to integrate the D4N prototype into production quality code that can be adopted by the community, these results are compelling enough that our partners are starting that effort. D3N and D4N demonstrate that cooperative caching techniques, originally designed for file systems, can be employed to integrate caching into today’s immutable object-based data lakes. We find that the properties of immutable object storage greatly simplify the adoption of these techniques, and enable integration of caching in a fashion that enables re-use of existing battle tested software; greatly reducing the barrier of adoption. In integrating the caching in the data lake, and not the compute cluster, this research opens the door to efficient data center wide sharing of data and resources
    • …
    corecore