13,398 research outputs found

    Importance and effectiveness of representing the shapes of Cosserat rods and framed curves as paths in the special Euclidean algebra

    Get PDF
    We discuss how the shape of a special Cosserat rod can be represented as a path in the special Euclidean algebra. By shape we mean all those geometric features that are invariant under isometries of the three-dimensional ambient space. The representation of the shape as a path in the special Euclidean algebra is intrinsic to the description of the mechanical properties of a rod, since it is given directly in terms of the strain fields that stimulate the elastic response of special Cosserat rods. Moreover, such a representation leads naturally to discretization schemes that avoid the need for the expensive reconstruction of the strains from the discretized placement and for interpolation procedures which introduce some arbitrariness in popular numerical schemes. Given the shape of a rod and the positioning of one of its cross sections, the full placement in the ambient space can be uniquely reconstructed and described by means of a base curve endowed with a material frame. By viewing a geometric curve as a rod with degenerate point-like cross sections, we highlight the essential difference between rods and framed curves, and clarify why the family of relatively parallel adapted frames is not suitable for describing the mechanics of rods but is the appropriate tool for dealing with the geometry of curves.Comment: Revised version; 25 pages; 7 figure

    Computation of protein geometry and its applications: Packing and function prediction

    Full text link
    This chapter discusses geometric models of biomolecules and geometric constructs, including the union of ball model, the weigthed Voronoi diagram, the weighted Delaunay triangulation, and the alpha shapes. These geometric constructs enable fast and analytical computaton of shapes of biomoleculres (including features such as voids and pockets) and metric properties (such as area and volume). The algorithms of Delaunay triangulation, computation of voids and pockets, as well volume/area computation are also described. In addition, applications in packing analysis of protein structures and protein function prediction are also discussed.Comment: 32 pages, 9 figure

    Embeddings and immersions of tropical curves

    Full text link
    We construct immersions of trivalent abstract tropical curves in the Euclidean plane and embeddings of all abstract tropical curves in higher dimensional Euclidean space. Since not all curves have an embedding in the plane, we define the tropical crossing number of an abstract tropical curve to be the minimum number of self-intersections, counted with multiplicity, over all its immersions in the plane. We show that the tropical crossing number is at most quadratic in the number of edges and this bound is sharp. For curves of genus up to two, we systematically compute the crossing number. Finally, we use our immersed tropical curves to construct totally faithful nodal algebraic curves via lifting results of Mikhalkin and Shustin.Comment: 23 pages, 14 figures, final submitted versio
    • 

    corecore