480 research outputs found

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed

    Optimal power control for real-time applications in cognitive satellite terrestrial networks

    Get PDF
    Cognitive satellite terrestrial networks have received considerable attention as a promising candidate to address the spectrum scarcity problem in future wireless communications. When satellite networks act as cognitive users in the networks, power control is a significant research challenge in the uplink case, especially for real-time applications. In this context, we propose two optimal power control schemes with the objectives of maximizing the delay-limited capacity and outage capacity, respectively, which are useful performance indicators for real-time applications. From the long-term and short-term aspects, average and peak power constraints are adopted respectively at the satellite user to limit the harmful interference caused to the terrestrial base station (BS). Extensive numerical results are given to demonstrate the impact of interference constraints and channel condition parameters on the performance limits of satellite users

    Downlink Coverage and Rate Analysis of Low Earth Orbit Satellite Constellations Using Stochastic Geometry

    Get PDF
    As low Earth orbit (LEO) satellite communication systems are gaining increasing popularity, new theoretical methodologies are required to investigate such networks' performance at large. This is because deterministic and location-based models that have previously been applied to analyze satellite systems are typically restricted to support simulations only. In this paper, we derive analytical expressions for the downlink coverage probability and average data rate of generic LEO networks, regardless of the actual satellites' locality and their service area geometry. Our solution stems from stochastic geometry, which abstracts the generic networks into uniform binomial point processes. Applying the proposed model, we then study the performance of the networks as a function of key constellation design parameters. Finally, to fit the theoretical modeling more precisely to real deterministic constellations, we introduce the effective number of satellites as a parameter to compensate for the practical uneven distribution of satellites on different latitudes. In addition to deriving exact network performance metrics, the study reveals several guidelines for selecting the design parameters for future massive LEO constellations, e.g., the number of frequency channels and altitude.Comment: Accepted for publication in the IEEE Transactions on Communications in April 202

    In-Building Capacity Enhancement using Small Cells in Mobile Networks: An Overview

    Get PDF
    In this paper, we give an overview of the state-of-the-art research studies to present the potential of small cells to address the high capacity demands of in-building users in mobile networks. In doing so, we discuss relevant theoretical backgrounds and carry out performance evaluations of key enabling technologies along with three major directions toward improving the network capacity, including spectrum accessibility, Spectral Efficiency (SE) improvement, and network densification. For the spectrum accessibility, numerous types of Small Cell Base Station (SBS) architectures of a Mobile Network Operator (MNO) are evaluated. For the SE improvement, cognitive radio techniques are evaluated for the Dynamic Spectrum Sharing (DSS) among multiple MNOs in a country. For the network densification, the spectrum reuse is evaluated at both intra-and inter-building levels for a given Co-Channel Interference (CCI) constraint. It is shown that multi-band multi-transceiver enabled small cells operating in the high-frequency millimeter-wave licensed or unlicensed spectrum to realize DSS techniques by exploiting SBS architectures for the spectrum accessibility, a hybrid interweave-underlay spectrum access in Cognitive Radio Networks for the spectral efficiency improvement, and both vertical and horizontal spectrum reuse in small cells deployed densely within buildings for the network densification can address high capacity demand in indoor mobile networks

    Efficient spectrum-handoff schemes for cognitive radio networks

    Get PDF
    Radio spectrum access is important for terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations. The services offered by terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations have evolved due to technological advances. They are expected to meet increasing users' demands which will require more spectrum. The increasing demand for high throughput by users necessitates allocating additional spectrum to terrestrial wireless networks. Terrestrial radio astronomy observations s require additional bandwidth to observe more spectral windows. Commercial earth observation requires more spectrum for enhanced transmission of earth observation data. The evolution of terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations leads to the emergence of new interference scenarios. For instance, terrestrial wireless networks pose interference risks to mobile ground stations; while inter-satellite links can interfere with terrestrial radio astronomy observations. Terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations also require mechanisms that will enhance the performance of their users. This thesis proposes a framework that prevents interference between terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations when they co-exist; and enhance the performance of their users. The framework uses the cognitive radio; because it is capable of multi-context operation. In the thesis, two interference avoidance mechanisms are presented. The first mechanism prevents interference between terrestrial radio astronomy observations and inter-satellite links. The second mechanism prevent interference between terrestrial wireless networks and the commercial earth observation ground segment. The first interference reductionmechanism determines the inter-satellite link transmission duration. Analysis shows that interference-free inter-satellite links transmission is achievable during terrestrial radio astronomy observation switching for up to 50.7 seconds. The second mechanism enables the mobile ground station, with a trained neural network, to predict the terrestrial wireless network channel idle state. The prediction of the TWN channel idle state prevents interference between the terrestrial wireless network and the mobile ground station. Simulation shows that incorporating prediction in the mobile ground station enhances uplink throughput by 40.6% and reduces latency by 18.6%. In addition, the thesis also presents mechanisms to enhance the performance of the users in terrestrial wireless network, commercial earth observations and terrestrial radio astronomy observations. The thesis presents mechanisms that enhance user performance in homogeneous and heterogeneous terrestrial wireless networks. Mechanisms that enhance the performance of LTE-Advanced users with learning diversity are also presented. Furthermore, a future commercial earth observation network model that increases the accessible earth climatic data is presented. The performance of terrestrial radio astronomy observation users is enhanced by presenting mechanisms that improve angular resolution, power efficiency and reduce infrastructure costs

    New Approaches Using Cognitive Radio in Green Networking

    Get PDF
    The green networks are energy-efficient network architectures and we consider them as the basis of the wireless communication optimizing energy usage. Indeed, future communication technologies are moving in this direction, meaning that they will be less energy-intensive and, in some cases, even energy self-sufficient. Specifically, cognitive radio (CR) networks, cooperative relay networks, and non-orthogonal multiple access (NOMA) techniques have been considered as effective means to facilitate energy harvesting (EH) and a power spectrum allocation for the minimization of total transmit power, hence, making the wireless communication greener. The dissertation consists of three research sections corresponding to the aims. The first aim deals with an radio frequency (RF) wireless energy transfer model for D2D systems. In order to harvest more energy, a multiple-antenna base station and a power beacon are adopted for the D2D transmission network. We derive expressions outage probability in closed-forms. Further, independent simulations are used to validate the exactness of the theoretical expressions. In the second aim, new cooperative system models are proposed and studied. To reach the second aim, the secondary source acts as a relay and employs Amplify and Forward (AF) mode to serve distant NOMA users under a given interference constraint. To provide a detailed examination of the system performance metrics, we derived closed-form formulas for the outage probability and average throughput of the multi-users in the presence of interference constraints. In the last aim of the dissertation, we designed a new system model for a hybrid satellite-terrestrial cognitive network (HSTCN) relying on NOMA interconnecting a satellite and multiple terrestrial nodes. Reliability and security of transmission were studied to minimize the total transmit power. To reach the third aim, we examined the following performance factors: outage probability, hardware impairment, intercept probability, and average throughput. The novel closed-forms expressions of these performance factors are derived. The last but not at least, we simulated the new HSTCN system model. The achieved results figured that the new proposed approaches make it possible to take into account service quality requirements and are applicable in future green networking.Zelené sítě jsou energeticky efektivní síťové architektury a považujeme je za základ bezdrátové komunikace optimalizující spotřebu energie. Tímto směrem se ubírají budoucí komunikační technologie, což znamená, že budou méně energeticky náročné a v některých případech dokonce energeticky soběstačné. Kognitivní rádiové (CR) sítě, kooperativní relay sítě a neortogonální vícenásobné přístupové (NOMA) techniky jsou považovány za účinný prostředek k usnadnění získávání energie (EH) a přidělování výkonového spektra pro minimalizaci celkového vysílacího výkonu, díky čemuž je bezdrátová komunikace zelenější. Disertační práce se skládá ze tří výzkumných částí odpovídajících cílům. První cíl se zabývá modelem bezdrátového přenosu radiofrekvenční (RF) energie pro systémy D2D. Aby bylo možné získat více energie, jsou pro přenosovou D2D síť použity základnové stanice s více anténami a napájecím radiomajákem. Pro navržený model jsou odvozeny pravděpodobnosti výpadků, kdy tyto výrazy jsou v uzavřené formě. Dále jsou k ověření platnosti získaných teoretických výrazů použity nezávislé simulace. Ve druhém cíli jsou navrženy a zkoumány nové modely kooperativního systému. Aby bylo dosaženo druhého cíle, sekundární zdroj funguje jako relay uzel a využívá režim AF (Amplify and Forward), který slouží vzdáleným NOMA uživatelům za specifických interferenčních podmínek. Abychom poskytli podrobné zhodnocení výkonnostních metrik systému, odvodili jsme vztahy v uzavřené formě pro pravděpodobnost výpadků a průměrnou propustnost více uživatelů za přítomnosti interferenčních omezení. V posledním cíli disertační práce jsme navrhli nový systémový model pro hybridní satelitně-terestrickou kognitivní síť (HSTCN) založenou na neortogonálním vícenásobném přístupu (NOMA) propojující satelit a více terestrických uzlů. Zkoumána byla spolehlivost a zabezpečení přenosu s důrazem na minimalizaci celkového vysílacího výkonu. Pro dosažení třetího cíle jsme zkoumali následující výkonnostní faktory: pravděpodobnost výpadku, poškození hardwaru, pravděpodobnost zachycení a průměrnou propustnost. Pro tyto výkonnostní faktory jsou odvozeny v uzavřených formách nové výrazy. V neposlední řadě jsme rovněž simulovali nový systémový HSTCN model. Dosažené výsledky potvrdily, že nově navržené přístupy umožňují zohledňovat požadavky na kvalitu služeb a jsou použitelné v budoucích zelených sítích.440 - Katedra telekomunikační technikyvyhově

    Komunikace na milimetrových vlnách v 5G a dalších sítích: Nové systémové modely a analýza výkonnosti

    Get PDF
    The dissertation investigates different network models, focusing on three important features for next generation cellular networks with respect to millimeter waves (mmWave) communications: the impact of fading and co-channel interference (CCI), energy efficiency, and spectrum efficiency. To address the first aim, the dissertation contains a study of a non-orthogonal multiple access (NOMA) technique in a multi-hop relay network which uses relays that harvest energy from power beacons (PB). This part derives the exact throughput expressions for NOMA and provides a performance analysis of three different NOMA schemes to determine the optimal parameters for the proposed system’s throughput. A self-learning clustering protocol (SLCP) in which a node learns its neighbor’s information is also proposed for determining the node density and the residual energy used to cluster head (CH) selection and improve energy efficiency, thereby prolonging sensor network lifetime and gaining higher throughput. Second, NOMA provides many opportunities for massive connectivity at lower latencies, but it may also cause co-channel interference by reusing frequencies. CCI and fading play a major role in deciding the quality of the received signal. The dissertation takes into account the presence of η and µ fading channels in a network using NOMA. The closed-form expressions of outage probability (OP) and throughput were derived with perfect successive interference cancellation (SIC) and imperfect SIC. The dissertation also addresses the integration of NOMA into a satellite communications network and evaluates its system performance under the effects of imperfect channel state information (CSI) and CCI. Finally, the dissertation presents a new model for a NOMA-based hybrid satellite-terrestrial relay network (HSTRN) using mmWave communications. The satellite deploys the NOMA scheme, whereas the ground relays are equipped with multiple antennas and employ the amplify and forward (AF) protocol. The rain attenuation coefficient is considered as the fading factor of the mmWave band to choose the best relay, and the widely applied hybrid shadowed-Rician and Nakagami-m channels characterize the transmission environment of HSTRN. The closed-form formulas for OP and ergodic capacity (EC) were derived to evaluate the system performance of the proposed model and then verified with Monte Carlo simulations.Dizertační práce zkoumala různé modely sítí a zaměřila se na tři důležité vlastnosti pro buňkové sítě příští generace s ohledem na mmW komunikace, kterými jsou: vliv útlumu a mezikanálového rušení (CCI), energetická účinnost a účinnost spektra. Co se týče prvního cíle, dizertace obsahuje studii techniky neortogonálního vícenásobného přístupu (NOMA) v bezdrátové multiskokové relay síti využívající získávání energie, kde relay uzly sbírají energii z energetických majáků (PB). Tato část přináší přesné výrazy propustnosti pro NOMA a analýzu výkonnosti se třemi různými schématy NOMA s cílem určit optimální parametry pro propustnost navrženého systému. Dále byl navržen samoučící se shlukovací protokol (SLCP), ve kterém se uzel učí informace o sousedech, aby určil hustotu uzlů a zbytkovou energii použitou k výběru hlavy shluku CH pro zlepšení energetické účinnosti, čímž může prodloužit životnost sensorové sítě a zvýšit propustnost. Za druhé, přístup NOMA poskytl mnoho příležitostí pro masivní připojení s nižší latencí, NOMA však může způsobovat mezikanálové rušení v důsledku opětovného využívání kmitočtů. CCI a útlum hrají klíčovou roli při rozhodování o kvalitě přijímaného signálu. V této dizertace je brána v úvahu přítomnost η a µ útlumových kanálů v síti užívající NOMA. Odvozeny jsou výrazy v uzavřené formě pro pravděpodobnost výpadku (OP) a propustnost s dokonalým postupným rušením rušení (SIC) a nedokonalým SIC. Dále se dizertace zabývá integrací přístupu NOMA do satelitní komunikační sítě a vyhodnocuje výkonnost systému při dopadech nedokonalé informace o stavu kanálu (CSI) a CCI. Závěrem disertační práce představuje nový model pro hybridní družicově-terestriální přenosovou síť (HSTRN) založenou na NOMA vícenásobném přístupu využívající mmWave komunikaci. Satelit využívá NOMA schéma, zatímco pozemní relay uzly jsou vybaveny více anténami a aplikují protokol zesilování a předávání (AF). Je zaveden srážkový koeficient, který je uvažován jako útlumový faktor mmWave pásma při výběru nejlepšího relay uzlu. Samotné přenosové prostředí HSTRN je charakterizováno pomocí hybridních Rician a Nakagami-m kanálů. Vztahy pro vyhodnocení výkonnosti systému navrženého modelu vyjadřující ergodickou kapacitu (EC) a pravděpodobnost ztrát (OP) byly odvozeny v uzavřené formě a následně ověřeny pomocí simulační numerické metody Monte Carlo.440 - Katedra telekomunikační technikyvyhově
    corecore