3 research outputs found

    A Survey of Botnet Detection Techniques by Command and Control Infrastructure

    Get PDF
    Botnets have evolved to become one of the most serious threats to the Internet and there is substantial research on both botnets and botnet detection techniques. This survey reviewed the history of botnets and botnet detection techniques. The survey showed traditional botnet detection techniques rely on passive techniques, primarily honeypots, and that honeypots are not effective at detecting peer-to-peer and other decentralized botnets. Furthermore, the detection techniques aimed at decentralized and peer-to-peer botnets focus on detecting communications between the infected bots. Recent research has shown hierarchical clustering of flow data and machine learning are effective techniques for detecting botnet peer-to-peer traffic

    Study of Peer-to-Peer Network Based Cybercrime Investigation: Application on Botnet Technologies

    Full text link
    The scalable, low overhead attributes of Peer-to-Peer (P2P) Internet protocols and networks lend themselves well to being exploited by criminals to execute a large range of cybercrimes. The types of crimes aided by P2P technology include copyright infringement, sharing of illicit images of children, fraud, hacking/cracking, denial of service attacks and virus/malware propagation through the use of a variety of worms, botnets, malware, viruses and P2P file sharing. This project is focused on study of active P2P nodes along with the analysis of the undocumented communication methods employed in many of these large unstructured networks. This is achieved through the design and implementation of an efficient P2P monitoring and crawling toolset. The requirement for investigating P2P based systems is not limited to the more obvious cybercrimes listed above, as many legitimate P2P based applications may also be pertinent to a digital forensic investigation, e.g, voice over IP, instant messaging, etc. Investigating these networks has become increasingly difficult due to the broad range of network topologies and the ever increasing and evolving range of P2P based applications. In this work we introduce the Universal P2P Network Investigation Framework (UP2PNIF), a framework which enables significantly faster and less labour intensive investigation of newly discovered P2P networks through the exploitation of the commonalities in P2P network functionality. In combination with a reference database of known network characteristics, it is envisioned that any known P2P network can be instantly investigated using the framework, which can intelligently determine the best investigation methodology and greatly expedite the evidence gathering process. A proof of concept tool was developed for conducting investigations on the BitTorrent network.Comment: This is a thesis submitted in fulfilment of a PhD in Digital Forensics and Cybercrime Investigation in the School of Computer Science, University College Dublin in October 201

    Effective and scalable botnet detection in network traffic

    Get PDF
    Botnets represent one of the most serious threats against Internet security since they serve as platforms that are responsible for the vast majority of large-scale and coordinated cyber attacks, such as distributed denial of service, spamming, and information stolen. Detecting botnets is therefore of great importance and a number of network-based botnet detection systems have been proposed. However, as botnets perform attacks in an increasingly stealthy way and the volume of network traffic is rapidly growing, existing botnet detection systems are faced with significant challenges in terms of effectiveness and scalability. The objective of this dissertation is to build novel network-based solutions that can boost both the effectiveness of existing botnet detection systems by detecting botnets whose attacks are very hard to be observed in network traffic, and their scalability by adaptively sampling network packets that are likely to be generated by botnets. To be specific, this dissertation describes three unique contributions. First, we built a new system to detect drive-by download attacks, which represent one of the most significant and popular methods for botnet infection. The goal of our system is to boost the effectiveness of existing drive-by download detection systems by detecting a large number of drive-by download attacks that are missed by these existing detection efforts. Second, we built a new system to detect botnets with peer-to-peer (P2P) command&control (C&C) structures (i.e., P2P botnets), where P2P C&Cs represent currently the most robust C&C structures against disruption efforts. Our system aims to boost the effectiveness of existing P2P botnet detection by detecting P2P botnets in two challenging scenarios: i) botnets perform stealthy attacks that are extremely hard to be observed in the network traffic; ii) bot-infected hosts are also running legitimate P2P applications (e.g., Bittorrent and Skype). Finally, we built a novel traffic analysis framework to boost the scalability of existing botnet detection systems. Our framework can effectively and efficiently identify a small percentage of hosts that are likely to be bots, and then forward network traffic associated with these hosts to existing detection systems for fine-grained analysis, thereby boosting the scalability of existing detection systems. Our traffic analysis framework includes a novel botnet-aware and adaptive packet sampling algorithm, and a scalable flow-correlation technique.PhDCommittee Chair: Lee, Wenke; Committee Member: Ahamad, Mustaque ; Committee Member: Copeland, John; Committee Member: Feamster, Nick; Committee Member: Traynor, Patric
    corecore