1,416 research outputs found

    OCReP: An Optimally Conditioned Regularization for Pseudoinversion Based Neural Training

    Full text link
    In this paper we consider the training of single hidden layer neural networks by pseudoinversion, which, in spite of its popularity, is sometimes affected by numerical instability issues. Regularization is known to be effective in such cases, so that we introduce, in the framework of Tikhonov regularization, a matricial reformulation of the problem which allows us to use the condition number as a diagnostic tool for identification of instability. By imposing well-conditioning requirements on the relevant matrices, our theoretical analysis allows the identification of an optimal value for the regularization parameter from the standpoint of stability. We compare with the value derived by cross-validation for overfitting control and optimisation of the generalization performance. We test our method for both regression and classification tasks. The proposed method is quite effective in terms of predictivity, often with some improvement on performance with respect to the reference cases considered. This approach, due to analytical determination of the regularization parameter, dramatically reduces the computational load required by many other techniques.Comment: Published on Neural Network

    Parallel methods for linear systems solution in extreme learning machines: an overview

    Get PDF
    This paper aims to present an updated review of parallel algorithms for solving square and rectangular single and double precision matrix linear systems using multi-core central processing units and graphic processing units. A brief description of the methods for the solution of linear systems based on operations, factorization and iterations was made. The methodology implemented, in this article, is a documentary and it was based on the review of about 17 papers reported in the literature during the last five years (2016-2020). The disclosed findings demonstrate the potential of parallelism to significantly decrease extreme learning machines training times for problems with large amounts of data given the calculation of the Moore Penrose pseudo inverse. The implementation of parallel algorithms in the calculation of the pseudo-inverse will allow to contribute significantly in the applications of diversifying areas, since it can accelerate the training time of the extreme learning machines with optimal results

    ADEPOS: Anomaly Detection based Power Saving for Predictive Maintenance using Edge Computing

    Full text link
    In industry 4.0, predictive maintenance(PM) is one of the most important applications pertaining to the Internet of Things(IoT). Machine learning is used to predict the possible failure of a machine before the actual event occurs. However, the main challenges in PM are (a) lack of enough data from failing machines, and (b) paucity of power and bandwidth to transmit sensor data to cloud throughout the lifetime of the machine. Alternatively, edge computing approaches reduce data transmission and consume low energy. In this paper, we propose Anomaly Detection based Power Saving(ADEPOS) scheme using approximate computing through the lifetime of the machine. In the beginning of the machines life, low accuracy computations are used when the machine is healthy. However, on the detection of anomalies, as time progresses, the system is switched to higher accuracy modes. We show using the NASA bearing dataset that using ADEPOS, we need 8.8X less neurons on average and based on post-layout results, the resultant energy savings are 6.4 to 6.65XComment: Submitted to ASP-DAC 2019, Japa

    Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with Random Bases

    Full text link
    For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov Chain Monte Carlo (MCMC) methods, namely, Hamiltonian Monte Carlo (HMC). The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the art methods
    • …
    corecore