28 research outputs found

    Error and Congestion Resilient Video Streaming over Broadband Wireless

    Get PDF
    In this paper, error resilience is achieved by adaptive, application-layer rateless channel coding, which is used to protect H.264/Advanced Video Coding (AVC) codec data-partitioned videos. A packetization strategy is an effective tool to control error rates and, in the paper, source-coded data partitioning serves to allocate smaller packets to more important compressed video data. The scheme for doing this is applied to real-time streaming across a broadband wireless link. The advantages of rateless code rate adaptivity are then demonstrated in the paper. Because the data partitions of a video slice are each assigned to different network packets, in congestion-prone wireless networks the increased number of packets per slice and their size disparity may increase the packet loss rate from buffer overflows. As a form of congestion resilience, this paper recommends packet-size dependent scheduling as a relatively simple way of alleviating the buffer-overflow problem arising from data-partitioned packets. The paper also contributes an analysis of data partitioning and packet sizes as a prelude to considering scheduling regimes. The combination of adaptive channel coding and prioritized packetization for error resilience with packet-size dependent packet scheduling results in a robust streaming scheme specialized for broadband wireless and real-time streaming applications such as video conferencing, video telephony, and telemedicine

    Protecting H.264/AVC Data-Partitioned Video Streams over Broadband WiMAX

    Get PDF
    Broadband wireless technology, though aimed at video services, also poses a potential threat to video services, as wireless channels are prone to error bursts. In this paper, an adaptive, application-layer Forward Error Correction (FEC) scheme protects H.264/AVC data-partitioned video. Data partitioning is the division of a compressed video stream into partitions of differing decoding importance. The paper determines whether equal error protection (EEP) through FEC of all partition types or unequal error protection (UEP) of the more important partition type is preferable. The paper finds that, though UEP offers a small reduction in bitrate, if EEP is employed, there are significant gains (several dBs) in video quality. Overhead from using EEP rather than UEP was found to be around 1% of the overall bitrate. Given that data partitioning already reduces errors through packet size reduction and differentiation of coding data, EEP with data partitioning is a practical means of protecting user-based video streaming. The gain from employing EEP is shown to be higher quality video to the user, which will result in a greater take-up of video services. The results have implications for other forms of prioritized video streaming

    Intra-Refresh Provision for WiMAX Data-Partitioned Video Streaming

    Get PDF
    Mobile, broadband wireless access is increasingly being used for video streaming. This paper is a study of the impact of intra-refresh provision upon a robust video streaming scheme intended for WiMAX. The paper demonstrates the use of intra-refresh macroblocks within inter-coded video frames as an alternative to periodic intra-refresh video frames. In fact, the proposed scheme combines intra-refresh macroblocks with data-partitioned video compression, both error resilience tools from the H.264 video codec. Redundant video packets along with adaptive channel coding are also used to protect video streams. In harsh wireless channel conditions, it is found that all the proposed measures are necessary. This is because error bursts, arising from both slow and fast fading, as well as other channel impairments, are possible. The main conclusions from a detailed analysis are that: because of the effect on packet size it is important to select a moderate quantization parameter; and because of the higher overhead from cyclic intra macroblock line update it is better to select a low percentage per frame of intra-refresh macroblocks. The proposed video streaming scheme will be applicable to other 4G wireless technologies such as LTE

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research

    Scalable Video Streaming with Prioritised Network Coding on End-System Overlays

    Get PDF
    PhDDistribution over the internet is destined to become a standard approach for live broadcasting of TV or events of nation-wide interest. The demand for high-quality live video with personal requirements is destined to grow exponentially over the next few years. Endsystem multicast is a desirable option for relieving the content server from bandwidth bottlenecks and computational load by allowing decentralised allocation of resources to the users and distributed service management. Network coding provides innovative solutions for a multitude of issues related to multi-user content distribution, such as the coupon-collection problem, allocation and scheduling procedure. This thesis tackles the problem of streaming scalable video on end-system multicast overlays with prioritised push-based streaming. We analyse the characteristic arising from a random coding process as a linear channel operator, and present a novel error detection and correction system for error-resilient decoding, providing one of the first practical frameworks for Joint Source-Channel-Network coding. Our system outperforms both network error correction and traditional FEC coding when performed separately. We then present a content distribution system based on endsystem multicast. Our data exchange protocol makes use of network coding as a way to collaboratively deliver data to several peers. Prioritised streaming is performed by means of hierarchical network coding and a dynamic chunk selection for optimised rate allocation based on goodput statistics at application layer. We prove, by simulated experiments, the efficient allocation of resources for adaptive video delivery. Finally we describe the implementation of our coding system. We highlighting the use rateless coding properties, discuss the application in collaborative and distributed coding systems, and provide an optimised implementation of the decoding algorithm with advanced CPU instructions. We analyse computational load and packet loss protection via lab tests and simulations, complementing the overall analysis of the video streaming system in all its components

    Adapting the Streaming Video Based on the Estimated Position of the Region of Interest

    Full text link
    corecore