123 research outputs found

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    The interplay between food knowledge, nudges, and preference elicitation methods determines the evaluation of a recipe recommender system

    Get PDF
    Domain knowledge can affect how a user evaluates different aspects of a recommender system. Recipe recommendations might be difficult to understand, as some health aspects are implicit. The appropriateness of a recommender’s preference elicitation (PE) method, whether users rate individual items or item attributes, may depend on the user’s knowledge level. We present an online recipe recommender experiment. Users (𝑁=360) with varying levels of subjective food knowledge faced different cognitive digital nudges (i.e., food labels) and PE methods. In a 3 (recipes annotated with no labels, Multiple Traffic Light (MTL) labels, or full nutrition labels) x2 (PE method : content-based PE or knowledge-based) between-subjects design. We observed a main effect of knowledge-based PE on the healthiness of chosen recipes, while MTL label only helped marginally. A Structural Equation Model analysis revealed that the interplay between user knowledge and the PE method reduced the perceived effort of using the system and in turn, affected choice difficulty and satisfaction. Moreover, the evaluation of health labels depends on a user’s level of food knowledge. Our findings emphasize the importance of user characteristics in the evaluation of food recommenders and the merit of interface and inter action aspects

    Exploring the effects of natural language justifications in food recommender systems

    Get PDF
    Users of food recommender systems typically prefer popular recipes, which tend to be unhealthy. To encourage users to select healthier recommendations by making more informed food decisions, we introduce a methodology to generate and present a natural language justification that emphasizes the nutritional content, or health risks and benefits of recommended recipes. We designed a framework that takes a user and two food recommendations as input and produces an automatically generated natural language justification as output, which is based on the user’s characteristics and the recipes’ features. In doing so, we implemented and evaluated eight different justification strategies through two different justification styles (e.g., comparing each recipe’s food features) in an online user study (N = 503). We compared user food choices for two personalized recommendation approaches, popularity-based vs our health-aware algorithm, and evaluated the impact of presenting natural language justifications. We showed that comparative justifications styles are effective in supporting choices for our healthy-aware recommendations, confirming the impact of our methodology on food choices

    Real-time recommendations for energy-efficient appliance usage in households

    Get PDF
    According to several studies, the most influencing factor in a household\u27s energy consumption is user behavior. Changing user behavior to improve energy usage leads to efficient energy consumption, saving money for the consumer and being more friendly for the environment. In this work we propose a framework that aims at assisting households in improving their energy usage by providing real-time recommendations for efficient appliance use. The framework allows for the creation of household-specific and appliance-specific energy consumption profiles by analyzing appliance usage patterns. Based on the household profile and the actual electricity use, real-time recommendations notify users on the appliances that can be switched off in order to reduce consumption. For instance, if a consumer forgets their A/C on at a time that it is usually off (e.g., when there is no one at home), the system will detect this as an outlier and notify the consumer. In the ideal scenario, a household has a smart meter monitoring system installed, that records energy consumption at the appliance level. This is also reflected in the datasets available for evaluating such systems. However, in the general case, the household may only have one main meter reading. In this case, non-intrusive load monitoring (NILM) techniques, which monitor a house\u27s energy consumption using only one meter, and data mining algorithms that disaggregate the consumption into appliance level, can be employed. In this paper, we propose an end-to-end solution to this problem, starting with the energy disaggregation process, and the creation of user profiles that are then fed to the pattern mining and recommendation process, that through an intuitive UI allows users to further refine their energy consumption preferences and set goals. We employ the UK-DALE (UK Domestic Appliance-Level Electricity) dataset for our experimental evaluations and the proof-of-concept implementation. The results show that the proposed framework accurately captures the energy consumption profiles of each household and thus the generated recommendations are matching the actual household energy habits and can help reduce their energy consumption by 2–17%

    Techno-economic assessment of building energy efficiency systems using behavioral change: A case study of an edge-based micro-moments solution

    Get PDF
    Energy efficiency based on behavioral change has attracted increasing interest in recent years, although, solutions in this area lack much needed techno-economic analysis. That is due to the absence of both prospective studies and consumer awareness. To close such gap, this paper proposes the first techno-economic assessment of a behavioral change-based building energy efficiency solution, to the best of the authors' knowledge. From the one hand, the technical assessment is conducted through (i) introducing a novel edge-based energy efficiency solution; (ii) analyzing energy data using machine learning tools and micro-moments, and producing intelligent, personalized, and explainable action recommendations; and (iii) proceeding with a technical evaluation of four application scenarios, i.e., data collection, data analysis and anomaly detection, recommendation generation, and data visualization. On the other hand, economic assessment is performed by examining the marketability potential of the proposed solution via a market and research analysis of behavioral change-based systems for energy efficiency applications. Also, various factors impacting the commercialization of the final product are investigated before providing recommended actions to ensure its potential marketability via conducting a Go/No-Go evaluation. In conclusion, the proposed solution is designed at a low cost and can save up to 28%-68% of the consumed energy, which results in a Go decision to commercialize the technology. 2021 Elsevier LtdThis paper was made possible by National Priorities Research Program (NPRP) grant No. 10-0130-170288 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu

    Scale-Score: Investigation of a Meta yet Multi-level Label to Support Nutritious and Sustainable Food Choices When Online Grocery Shopping

    Full text link
    Food consumption is one of the biggest contributors to climate change. However, online grocery shoppers often lack the time, motivation, or knowledge to contemplate a food's environmental impact. At the same time, they are concerned with their own well-being. To empower grocery shoppers in making nutritionally and environmentally informed decisions, we investigate the efficacy of the Scale-Score, a label combining nutritional and environmental information to highlight a product's benefit to both the consumer's and the planet's health, without obscuring either information. We conducted an online survey to understand user needs and requirements regarding a joint food label, we developed an open-source mock online grocery environment, and assessed label efficacy. We find that the Scale-Score supports nutritious purchases, yet needs improving regarding sustainability support. Our research shows first insights into design considerations and performance of a combined yet disjoint food label, potentially altering the label design space.Comment: Work in progress. arXiv admin note: text overlap with arXiv:2309.0323

    Responses to human-like artificial agents : effects of user and agent characteristics

    Get PDF

    Designing for User Confidence in Intelligent Environments

    Get PDF
    Intelligent environments aim at supporting and assisting users in their daily activities. Their reliability, i.e., the capability of correctly accomplishing the intended tasks and of limiting or avoiding damage in case of malfunctions, is essential as for any user-facing technology. One aspect of reliability, often neglected, is guaranteeing the consistency between system operation and user expectations, so that users may build confidence over the correct behavior of the system and its reaction to their actions. The paper will review the literature concerning methodologies and tools that directly involve users and have been specifically applied or adopted for intelligent environments, throughout the entire design flow – from requirements gathering to interface design. The paper will then propose, building on top of the previous analysis, a set of guidelines that system designers should follow to ensure user confidence in their intelligent environments

    Building power consumption datasets: Survey, taxonomy and future directions

    Get PDF
    In the last decade, extended efforts have been poured into energy efficiency. Several energy consumption datasets were henceforth published, with each dataset varying in properties, uses and limitations. For instance, building energy consumption patterns are sourced from several sources, including ambient conditions, user occupancy, weather conditions and consumer preferences. Thus, a proper understanding of the available datasets will result in a strong basis for improving energy efficiency. Starting from the necessity of a comprehensive review of existing databases, this work is proposed to survey, study and visualize the numerical and methodological nature of building energy consumption datasets. A total of thirty-one databases are examined and compared in terms of several features, such as the geographical location, period of collection, number of monitored households, sampling rate of collected data, number of sub-metered appliances, extracted features and release date. Furthermore, data collection platforms and related modules for data transmission, data storage and privacy concerns used in different datasets are also analyzed and compared. Based on the analytical study, a novel dataset has been presented, namely Qatar university dataset, which is an annotated power consumption anomaly detection dataset. The latter will be very useful for testing and training anomaly detection algorithms, and hence reducing wasted energy. Moving forward, a set of recommendations is derived to improve datasets collection, such as the adoption of multi-modal data collection, smart Internet of things data collection, low-cost hardware platforms and privacy and security mechanisms. In addition, future directions to improve datasets exploitation and utilization are identified, including the use of novel machine learning solutions, innovative visualization tools and explainable mobile recommender systems. Accordingly, a novel visualization strategy based on using power consumption micro-moments has been presented along with an example of deploying machine learning algorithms to classify the micro-moment classes and identify anomalous power usage. 2020 The AuthorsThis paper was made possible by National Priorities Research Program (NPRP) Grant No. 10-0130-170288 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. Open Access funding provided by the Qatar National LibraryScopu
    • …
    corecore