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A B S T R A C T

Energy efficiency based on behavioral change has attracted increasing interest in recent years, although,
solutions in this area lack much needed techno-economic analysis. That is due to the absence of both
prospective studies and consumer awareness. To close such gap, this paper proposes the first techno-economic
assessment of a behavioral change-based building energy efficiency solution, to the best of the authors’
knowledge. From the one hand, the technical assessment is conducted through (i) introducing a novel edge-
based energy efficiency solution; (ii) analyzing energy data using machine learning tools and micro-moments,
and producing intelligent, personalized, and explainable action recommendations; and (iii) proceeding with a
technical evaluation of four application scenarios, i.e., data collection, data analysis and anomaly detection,
recommendation generation, and data visualization. On the other hand, economic assessment is performed by
examining the marketability potential of the proposed solution via a market and research analysis of behavioral
change-based systems for energy efficiency applications. Also, various factors impacting the commercialization
of the final product are investigated before providing recommended actions to ensure its potential marketability
via conducting a Go/No-Go evaluation. In conclusion, the proposed solution is designed at a low cost and
can save up to 28%–68% of the consumed energy, which results in a Go decision to commercialize the
technology.
1. Introduction

Recent predictions assume that the urban population is expected
to double by 2050, leading to a surge in the overall urban power
consumption from approximately 240 EJ to more than 730 EJ (Carréon
and Worrell, 2018). Particularly in urban areas, only the building sector
consumes more than 35%–40% of the overall energy used in such
environments and accounts for roughly for more than 50% of the CO2
emission (Giraudet, 2020). That elects buildings as the primary power
consumer and the principal contributor to gas emissions (Sayed et al.,
2021a; Pan and Zhang, 2020). Also, the consumption could be further
increased due to some unexpected circumstances. e.g., the COVID-
19 pandemic and its impact on energy consumption in households
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because of isolation practices, which have promoted teleworking and
e-learning, and hence has boosted the energy usage in residential
buildings (Qarnain et al., 2021; García et al., 2021). Consequently,
developing green buildings, including measures to curtail energy us-
age, has become a current challenge, in which governments, decision-
makers, and utility companies invest large sums of money annually to
develop innovative solutions to promote energy efficiency (Al-Kababji
et al., 2020; Strielkowski et al., 2021). The market of energy efficiency
systems is driven by users’ and governments’ requirements for higher
energy efficiency in residential buildings. That could be achieved by
incorporating cutting-edge energy-saving technologies, such as the In-
ternet of things (IoT), artificial intelligence (AI) and machine learn-
ing (ML), and edge/cloud computing (Barzegar et al., 2020). On the
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Nomenclature

AI artificial intelligence
B2B business-to-business
B2C business-to-consumer
BMC business model canvas
CAGR compound annual growth rate
DACR device active consumption range
DFM data Fusion Module (DFM)
DOT device operation time
DSPC device standby power consumption
DNN deep neural networks
DRED Dutch residential energy dataset
DT decision tree
EBT ensemble bagging tree
HVAC heating, ventilation, and air conditioning
ICT information and communication technolo-

gies
IoT Internet of things
KNN k-nearest neighbors
KAM knowledge abstraction module
LDA linear discriminant analysis
LR logistic regression
ML machine learning
MLP multi-layer perceptron
NB naive Bayes
NPV net present value
NGO non-governmental organizations
PaaS platform-as-a-service
QUD Qatar University dataset
QOS quality of service
PCB printed circuit board
RF random forest
ROI return on investment
SaaS software-as-a-service
SiD simulated dataset
SVM support vector machine

other hand, human-centered solutions focusing on the analysis of con-
sumers’ behavior change through big data analytics, anomaly detection
techniques, and recommender systems are also receiving increasing
attention (Xu et al., 2021b; Alsalemi et al., 2021).

Although the interventions to the buildings can significantly reduce
energy consumption, they are costly and are more challenging to
apply in old buildings or buildings that are already in use (Soares
et al., 2021). That has raised the potential of IoT-based solutions
that perform lightweight interventions to the building and promote
change by adding sensors or actuators that can be controlled using
AI and information and communication technologies (ICT) (Himeur
et al., 2021a). In this line, energy providers, policymakers, and end-
users have become progressively more aware of the importance of
these technologies and behavioral change towards energy saving and
reduction of carbon emission in residential (Zhu et al., 2021; Xu et al.,
2021a) and office buildings (Rafsanjani et al., 2020). In this context,
an increasing number of research works (Iwasaki, 2019; Himeur et al.,
2021b) and projects (e.g. MOBISTYLE (Barthelmes et al., 2018)) as well
as commercial products. For example, Hive (AlertMe, 2020) provides a
wide range of smart products (thermostats, lights, cameras and motion
sensors, etc.), which can be controlled through a mobile app or using
popular personal assistant services such as Alexa, Google Assistant,
and Siri. In a simpler approach, Ecois.me (Ecoisme, 2020) provides
2

a smart sensor that can be attached to the main electrical panel.
Hence, it automatically identifies the connected appliances and their
consumption. Similarly, Loop (Loop, 2020) provides a monitoring kit, a
mobile application, and a recommendation engine for finding the best
energy provider per case scenario. Although commercial applications
are primarily targeted into monitoring and analytics, research projects
capitalize on the potential of change towards a more sustainable be-
havior, and they address the detection and matching of consumer
attitudes with specific recommended actions (Sardianos et al., 2021).
For example, the Eco-Home Diagnosis program in Japan (Iwasaki,
2019) studies the behavioral intentions of people to reduce energy con-
sumption and the factors that influence their decisions. Similarly, the
EnerGAware project (Casals et al., 2020) evaluates the effect of gam-
ification in reducing domestic energy consumption. The MOBISTYLE
project (Barthelmes et al., 2018) combines gamification (e.g. an energy-
saving mission) with analytics to motivate users towards energy saving.
In contrast, the (EM)3 project (Alsalemi et al., 2019) employs intel-
ligent recommendations and analytics to shape more efficient behav-
iors gradually. Besides, the Schools4energy framework in Pietrapertosa
et al. (2021) attempts to strengthen the educational awareness towards
energy consumption using analytical methods, co-creation, and gam-
ification. Generally speaking, the intelligent systems deployed in the
building energy sector aim to monitor all the possible aspects of user
activity that consume energy, evaluate the impact of all actions and be-
haviors on the energy-saving potential, and prioritize the recommended
actions accordingly (Starke et al., 2020). Moreover, to further maximize
the recommendation acceptance rate, they consider the elasticity of
users’ needs and estimate the probability of positive users’ responses to
a recommended energy-saving action (Ashouri et al., 2018; Varlamis
et al., 2020).

However, the adoption of technology-based energy-saving solutions
in real-world applications is still a challenge since individuals are
unaware of their power usage and effectiveness. Hence, they are unable
to adopt energy-efficient actions. Additionally, the cost of installation
and end-users privacy preservation solutions is still an obstacle, espe-
cially when cloud data centers are deployed to meet the computing
requirements of the solutions. On the other hand, when developing
and commercializing any new energy efficiency solution, a techno-
economic assessment should be conducted (Das et al., 2021) to evaluate
its marketability potential (market assessment). Explicitly, a thorough
analysis of the energy-saving market’s forces, drivers, barriers, risks,
opportunities, and potential competitors must be conducted in addi-
tion to the technical evaluation and validation. Put simply, before
launching a new solution, performing a market assessment is of utmost
importance to estimate the potential customer base. Thus, a properly
implemented marketability study aids in (i) understanding how to
deploy the new solution with limited resources; and (ii) comprehending
how to pursue the best market opportunities while providing the great-
est return on investments. By contrast, failing to conduct an accurate
marketing assessment may lead to wasting resources, missing on mar-
ket opportunities, and lowering the return on investments (Akinyele,
2017).

Intending to meet the objectives mentioned above, this paper pro-
poses, to the best of the authors’ knowledge, the first techno-economic
study that discusses the technical and business potential of a novel
edge-based energy efficiency system based on behavioral change. In
this regard, the proposed energy-saving solution adopts an efficient
AI classifier, a micro-moment analysis concept, and an explainable
recommender system to boost energy saving in buildings. This solution
is mainly adequate for buildings relying only on electricity for their
energy-related needs. However, it can also be used for other kinds
of buildings that use gas or different fuel types. That is because our
solution is built upon the Home Assistant open-source platform, which
is the main engine for collecting and fusing data from any IoT device
and delivering personalized recommendations to a smartphone app. In

this context, the hardware and software contributions of the proposed
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solution are explained in detail with a focus on three case scenarios: (i)
data collection; (ii) data analysis and anomaly detection of energy con-
sumption; and (iii) explainable recommendation generation. Moreover,
we conduct a comprehensive Go/No-Gomarketability evaluation based
on discussing four areas related to the most recent products, patents,
research projects, and commercialization strategy considerations. In
this line, a market assessment study is performed to evaluate the com-
mercial potential of a new energy-saving product based on behavioral
change and micro-moments. We also provide overall recommendations
based on a cursory examination of (i) possible competing products, (ii)
existing/published patents, (iii) business model, (iv) market barriers,
(v) market drivers, and (vi) commercialization considerations.

The main objectives of this article, which are in essence its novel
contributions, are summarized below:

• Discussing related work to inform the current research initiatives
on the application of ICT to curtail energy demand and realized
that implementation in real scenarios is still lagging due to lack
of marketability and economic analysis.

• Proposing a novel energy-saving solution based on behavioral
change, in which a robust ML classifier and micro-moment anal-
ysis are used to detect abnormal energy consumption. Moreover,
an explainable recommender system is introduced to recommend
contextual and engaging recommendations to end-users and in-
centivize them to adopt the recommended actions. Whereas the
use of explainability in recommender systems is still in its infancy,
to the best of the authors’ knowledge, there is no commercial
energy-saving solution built upon the explainable recommender
systems.

• Designing the hardware/software prototype of the proposed so-
lution, which includes two main parts: (a) the smart plug and
(b) the mobile app. The former encompasses sensing devices that
capture different kinds of data and safely store them in a secure
database.

• Conducting the first techno-economic analysis of behavioral
change-based energy-saving solutions, where the proposed solu-
tion is considered a case study. Specifically, the technical valida-
tion is performed with regard to four use case scenarios, including
data collection, data analysis and anomaly detection, explainable
recommendation generation, and data visualization.

• Assessing the marketability potential of the proposed solution in
comparison with existing products.

• Providing recommendations based on a Go/No-Go marketability
evaluation of the proposed energy-saving solution.

Fig. 1 presents a graphical illustration of the structure and main
contributions of the proposed framework.

The rest of this paper is organized as follows. Section 2 discusses
related work that adopt the ICT tools, behavioral change, and recom-
mender systems to promote building energy-saving as well as the mar-
ketability of building energy-saving solutions. Section 3 dives deeper
into the technical contributions of our paper, in which the (EM)3
ramework1 is introduced. In Section 4, the technical contributions of
he proposed solution are evaluated with reference to four use case
cenarios. While Section 5 assesses its marketability potential. Finally,
ection 6 concludes this work with the next steps for improving the
EM)3 solution and strengthening its marketability potential.

1 (EM)3: Consumer Engagement Towards Energy Saving Behavior by means
of Exploiting Micro-Moments and Mobile Recommendation Systems (http://
em3.qu.edu.qa/).
3

2. Literature review

Various frameworks, patents, and products have been proposed in
the literature to promote energy saving in buildings. In this section,
we perform a comprehensive investigation of the state-of-the-art by
analyzing several energy-saving works from different sources. In ad-
dition, because our paper focuses on a techno-economic analysis, we
also survey the frameworks highlighting the marketability of various
solutions in the energy sector and then derive their pros and cons.

2.1. Energy saving solutions based on behavioral change

Recent advances in green energy efficiency allow modern buildings
to save energy by more than 50% compared to ordinary buildings and
can even produce energy with energy-producing add-ons (e.g., pho-
tovoltaic or wind generators). Such technology can further reduce
consumed energy (Aydin et al., 2019a). However, access to this kind of
buildings is still minimal, especially in developing countries, because
of the high cost of designing green buildings with structural improve-
ments. Therefore, in addition to the structural changes in the buildings
and the technological advancement of appliances, the change in user
behavior is supported by a large variety of ICT solutions that combines
consumption monitoring and recommendations (Jia et al., 2017).

In this subsection, to be fair in conducting our literature review,
we focus on reviewing the existing energy-saving solutions that are
commercialized or in the pre-commercialization phase. However, other
state-of-the-art research frameworks have been proposed and validated
for some use case scenarios, although they are far from being commer-
cialized. For example, the work of Nguyen and Aiello (2013) offers an
exciting survey of energy-intelligent buildings based on user activity.
The more recent work of Alsalemi et al. Alsalemi et al. (2019) focused
on the habitual behavior change and surveyed the more recent works.
Moving on, in Petkov et al. (2011), a survey is conducted to provide the
main indications to design motivation-specific energy-saving feedback.
Accordingly, eco-visualizations have been examined along with norm
comparison, temporal self-comparison, one-on-one comparison, and
ranking. That mainly helped in exploring the potential of socializing
energy-saving feedback. Moreover, the feedback has been embedded
in a mobile app named EnergyWiz, allowing consumers to compare
their actual consumption with their past performance, neighbors, other
EnergyWiz users, and contacts from social networks. Similarly, the
authors in Timm and Deal (2016) investigate the crucial role of human
behavior in reducing energy consumption by studying the impact of
real-time information on affecting building occupant attitudes and
behaviors toward energy-saving use. In doing so, different buildings
have been outfitted with a central data visualization dashboard of
the buildings’ real-time power consumption, and a six-week energy
behavioral change campaign has been conducted as well. Moving for-
ward, in Iria et al. (2020), a mobile gamification app is proposed for
fostering the endorsement of energy-saving behaviors in workspaces.
The mobile app encompasses various kinds of dashboards that provide
multiple benefits, among them (i) increasing users’ awareness using
an information dashboard; (ii) engaging users in real-time energy-
saving competitions using a gaming dashboard; (iii) promoting peer
competitions and comparisons using a leaderboard; and (iv) notifying
users with tailor-made messages to reduce power consumption using a
dashboard.

Conversely, as mentioned above, there are other energy-saving
products or solutions in the commercialization phase, although they
have some limitations and drawbacks. Most of them are based on
the use of AI tools but without considering the importance of the
recommender systems to provide end-users with recommendations and
explanations to assist in reducing wasted energy. For instance, Watch-
Wire from EnergyWatch (EnergyWatch, 2020) is a cloud-based data
management, auditing, and reporting platform, that calculates energy

consumption and CO2 emissions for commercial buildings. It is used
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Fig. 1. Graphical illustration of the structure and main contributions of the proposed framework.
H-
to manage the energy efficiency business process, simplify energy
reporting, reduce energy expenses and increase energy income. Energy-
CAP (Energycap, 2021) is a family of energy management and energy
accounting software products used for tracking, managing, processing,
reporting, benchmarking, and analyzing utility bills, and providing
energy and sustainability information. It is mainly suited for large orga-
nizations with comprehensive energy information management needs.
Energy Manager from Dude Solutions (Dude, 2021) analyzes utility
bills, helps users understand energy consumption, and identifies cost-
saving opportunities. The solution is tailored for public and commercial
buildings with central utilities. Finally, GreenerU (GreenerU, 2020)
provides sustainability solutions for Academic buildings targeting cen-
tralized utilities (e.g., HVAC optimization, building automation system,
lighting, etc.)

Another group of energy-saving products is mainly addressed for
households and smaller private or public buildings. MACH Energy pro-
vides a comprehensive suite of energy management software tools (MAC
Energy, 2020)which are primarily targeting public and private build-
ings. MACH’s Initiatives automatically identifies energy-saving oppor-
tunities using load profiles of the building and similar buildings in the
area and presents facts (e.g., savings in dollars, energy consumption,
etc.) that help users prioritize their decisions. Also, SENSE (SENSE,
2020) is developed around a hardware energy monitor installed in the
household’s electric panel. This module processes millions of current
readings per second, identifies device signals, and presents a whole-
home consumption view. It also connects with Google Assistant and
Alexa to facilitate user interaction. Similarly, the home energy monitor
by Neurio (Neurio, 2020) is installed in the household’s load panel
and provides granular energy data for devices. Table 1 lists the top
products, their manufacturer, their relevance to the author’s solution,
and their application. Moreover, only the SENSE and Home Energy
Monitor products have reported the related information in terms of the
price. They have been valued at the costs of 300 USD and 200 USD,
respectively.

2.2. Energy-saving using recommender systems

With the increasing use of IoT, AI, and big data analytics, recom-
mender systems have found their way into the building energy sector.
Typically, while conventional energy-saving solutions considered oc-
cupants as immovable objects independent from the energy efficiency
4

problem, solutions based on recommender systems build energy-saving
models with human-in-the-loop by encouraging end-users to participate
in the optimization process (Himeur et al., 2021a). To that end, us-
ing recommender systems to promote efficient and sustainable energy
consumption behaviors is receiving significant attention nowadays.

In Wei et al. (2020), energy optimization in a commercial building is
formulated as a Markov decision process (MDP), and a deep reinforce-
ment learning (DRL) model is employed for learning energy efficiency
recommendations. Following this, DRL is automatically engaged in pro-
viding end-users with personalized and engaging energy-saving advice.
In Wei et al. (2018), two kinds of energy-saving recommendations are
generated using end-users locations and used to promote energy saving
in commercial buildings. Accordingly, end-users are recommended for
(i) moving from a space to another using ‘‘move recommendations’’;
or (ii) arriving/departing a period-of-time earlier/later using ‘‘schedule
recommendations’’. In Sardianos et al. (2020), the authors introduce
a goal-based context-aware recommender system, namely REHAB-C,
for supporting end-users to transform their energy consumption behav-
iors in office buildings. Specifically, information related to end-users
actions and context is recorded using intelligent sensors, submeters,
and actuators before evaluating the proposed energy-saving actions.
In this line, after analyzing the data, REHAB-C provides end-users
with three kinds of recommendations to trigger an energy-saving ac-
tion, postpone it or cancel it altogether. Moving on, in Sardianos
et al. (2021), aiming at increasing the recommendation acceptance,
REHAB-C is augmented with explanations and persuasive facts that
are generated for each recommended action. These explanations have
been generated for emphasizing either the positive ecological impacts
or economic saving prospects. In a similar way, Starke (2019) develop
Saving Aid, a recommender system for promoting energy saving in
residential buildings by examining the impact of advice solicitation.

Moreover, other frameworks have focused on developing different
types of energy-saving recommender systems, such as multi-agent-
based (Pinto et al., 2018; Kaur et al., 2019), Rasch-based (Starke
et al., 2015, 2017), ML-based (Dahihande et al., 2020; Machorro-
Cano et al., 2020), etc. While every type has its pros and cons, it
was evident that adding explanations to the recommender framework
helps in further increasing the recommendation acceptance rate (Naiseh
et al., 2020; Tsolakis et al., 2021). Therefore, there has recently been
a move towards developing transparent and explainable recommender
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Table 1
Comparison of commercial solutions for energy efficiency based on behavioral change.

Product name Manufacturer Relevance Application

WatchWire EnergyWatch Utility budgeting, forecasting algorithm, supply market projections,
delivery tariff rates and public service commission rate cases.

Commercial buildings

EnergyCAP EnergyCAP Energy management, data presentation troubleshooting, and utility
bill accounting workflow.

Work offices, households

Energy Manager Dude Solutions Dashboard views, recommending saving actions and reporting Public & com-commercial buildings

GreenerU GreenerU In-depth analysis and understanding of campus energy infrastructure Academic buildings

Energy Management Software MACH Energy Actionable energy data analytics, deep insight into energy usage
and costs, tenant billing systems.

Households, public buildings

SENSE SENSE Insight into household energy use and home activity through a
proprietary iOS, Android, and web apps.

Households

Home Energy Monitor Neurio Utility bill accounting workflow, energy reduction tracking, and
others

Households
systems (Liu et al., 2020). To that end, we introduce in this frame-
work a micro-moment-based big data analytics and an explainable
recommender system, which are components of the overall proposed
energy-saving solution. They help in detecting abnormal energy con-
sumption, promoting behavioral change, and boosting energy saving
in buildings.

2.3. Existing patents

To extend our literature review on building energy-saving solutions,
this section overview existing patents based on behavioral change.
Accordingly, Table 2 summaries various competing patents and patent
applications. These frameworks indicate the directions of research and
development (R&D) and drive the patent literature’s state-of-the-art
technology. It is worth mentioning that we focus on analyzing exist-
ing patents from the standpoint of market competition to highlight
their relevance and specific application environment (e.g., domestic
applications, office buildings, etc.).

The patent search shows that home energy monitoring is an area
of high interest, with novel solutions that improve the current state-
of-the-art being actively sought. The absence of any single patent or
application that combines the same features, functionality, and ap-
proach as our proposed technology is an additional indication of its
novelty. In combination, these two factors indicate that the subject
technology is of high interest in the market and can provide clear
competitive advantages.

2.4. Marketability of energy-saving solutions

To guarantee the success of an ICT-based solution in building the
energy efficiency market, it is vital to early assess its marketability
potential. The early detection of the market’s strengths and weaknesses,
needs, and risks will allow introducing and positioning of the product
in the market correctly. When designing a sustainable marketable prod-
uct, it is essential to consider its economic, social, and environmental
aspects (Viti et al., 2020). For technology products, e.g., intelligent
systems that combine software with hardware, it is also crucial to be
technologically advance and at least match the technical features of
their main competitors. Monitoring and advisory systems that promote
energy efficiency must be offered at lower prices than the competing
solutions and should demonstrate higher energy-saving benefits.

According to the net present value (NPV) criterion method (Remer
and Nieto, 1995; Ameli and Brandt, 2015), the investment on an inno-
vative project must take into account: (i) the free cash flows, (ii) the
overall costs (including materials costs, labor, and operating costs, and
taxation), and (iii) the time required for production and deployment.
These values have to be projected to the present, future, annual, and
capitalized worth values to test the feasibility and sustainability of the
5

marketed solution.
Although to the importance of energy efficiency systems for the
stakeholders in the buildings sector (e.g., companies, governments, and
the end-users), a few frameworks have been proposed in the literature
to assess their marketability. These frameworks begin with the iden-
tification of the market barriers and drivers. For example, in Alsop
et al. (2017), the authors conduct a market assessment that aims at
informing governments and utility companies where the best energy
investments could be achieved for meeting the objectives of the united
nations and improving the living standards of the population in rural
regions. Explicitly, different parameters are investigated to identify the
associated strengths and weaknesses of a specific region and which
products are more appropriate. While, in Aydin et al. (2019b), Aydin
et al. focus on studying the relationship between building energy-saving
solutions, their aesthetic characteristics, and their marketability.

In Brey et al. (2018), a marketability study is conducted for ana-
lyzing the cost related to the primary change of traditional gasoline
and diesel fuels by hydrogen fuel for road transport in Spain with
reference to two main aspects, which are (i) the investors active in
this sector, and (ii) the consumers who will consume the fuel. Moving
forward, the authors in Nanduri and Kazemzadeh (2012) present a bi-
level and array game-theoretical model for assessing economic impacts
and making operational decisions in carbon-constrained restructured
energy-based markets. Thus, a reinforcement learning scheme has been
used to consider different learning and adaptive factors of the market’s
participants. While in the early work of Brambley et al. (2005), the
authors assess the market for building controls (plant control and
maintenance, energy recording and saving) and systems (heating, ven-
tilation and air-conditioning, lighting, security, fire/life safety, and
access control). They identify the principal value proposition by (i)
enhancing the indoor environment and building an economic activity
and (ii) decreasing the building maintenance and operations expenses.

On the other hand, different techno-economic analysis studies have
been proposed in the literature to assess the commercialization poten-
tial of different energy-based solutions. Among them, photovoltaic- and
thermal-based smart building energy systems (Behzadi et al., 2020), hy-
brid photovoltaic and solar-thermal systems (Herrando and Markides,
2016), solar photovoltaic power-to-heat-to-power storage (Datas et al.,
2019) and optimal control of battery storage (Engels et al., 2019).
However, to the best of the authors’ knowledge, no extensive techno-
economical assessment of energy-saving solutions based on behavioral
change has been evaluated.

2.5. Limitations and drawbacks

The early work of Heinemeier (1998) introduced eight categories for
assessing the marketability of energy-related systems: the system intent,
the system value, the action to be taken, the required system reliability,

the user notification, the user role, the system cost, and the size of the
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Table 2
Description of existing energy efficiency based behavioral change patents.

Patent ID Relevance Environment Assignee

EP2318891A1 (Hoeynck and Andrews, 2010) Collecting sensor-based occupancy and predicting consumption Domestic/office buildings Robert Bosch GmbH

US20140099614A1 (Hu and Zira, 2014) Analyzing user activity data, identifying anomalous consumption
and optimizing energy usage

Households Lark Technologies Inc

US20140058806A1 (Guenette et al., 2016) Energy saving using a network-connected, multi-sensing learning
thermostat

Households Google LLC

US20170132722A1 (Nikolopoulos and Staikos, 2017) Promoting energy saving using real-time social energy behavioral
change

Households -

US6633823B2 (Bartone et al., 2006) Systems and methods for monitoring and control of energy
consumption systems

Households Michael D. Murphy

US20100286937A1 (Tsypin and Raghu, 2010) Promoting behavioral change via the estimation of specific energy
usage and statistical analysis of collected data

Households Bizen Green Energy Corp

US9411323B2 (Tappeiner, 2016) Behavioral energy consumption change and appliances monitoring
using IoT devices

Households LOWFOOT Inc

US9927819B2 (Kolavennu, 2018) Providing end-users with consumption statistics and controlling of
appliances remotely

Households Honeywell

US20120296799A1 (Playfair and Hammond, 2012) System, method and computer program for energy use management
and reduction

Households LOWFOOT Inc

US9732979B2 (Fadell et al., 2017) Optimizing energy consumption of HVAC using behavioral change
and a thermostat

Public/domestic buildings Google LLC

US20110313579A1 (Ling, 2011) Energy consumption reducing by comparing the temporal habit
pattern with current environmental parameters

Households -
e
e

market. These categories influence the methodology for the marketabil-
ity assessment of any energy-related solution. The analysis of Aydin
et al. on the marketability of energy-efficient buildings (Aydin et al.,
2019a) identifies the lack of their widespread adoption. It associates it
with the market failure and applicability problems of the integrated
design approach. It considers it as a significant impediment to the
marketability of energy efficiency solutions in buildings. The current
lack of an integrated building design that accommodates intelligent
energy-saving solutions can be an opportunity for future marketability
endeavors.

Another major drawback of existing approaches is that they leave
the human factor out of their scope. Although the frameworks men-
tioned earlier have been proposed to assess energy-saving systems’
marketability, a few works have targeted the behavioral change-based
energy efficiency issue. Moreover, no one has used the micro-moment
paradigm. Even when humans are considered part of the energy-saving
ecosystem, existing energy efficiency frameworks (i) provide innova-
tive visualizations of energy consumption in an attempt to gamify
the energy efficiency process (Fraternali and Herrera Gonzalez, 2019;
Koroleva et al., 2019) but do not help users to perform better with on-
time and context-aware recommendations; (ii) target only the energy-
consuming HVAC appliances and do not provide a complete solution
for households, commercial or office buildings (Wei et al., 2018);
and (iii) offer generic recommendations and tips in order to increase
awareness but do not consider the actual needs and habits of peo-
ple (Paredes-Valverde et al., 2020) and do not generate eco-friendly
alternatives.

In conclusion, contemporary research approaches have several fea-
tures that promote behavioral change, such as gamification or visual-
ization to motivate users through competitions or reward. However,
these approaches lack automation and mainly rely on user input to
achieve energy-saving outcomes. The proposed solution, (EM)3 aligns

ith future research directions and promotes behavioral change by
roactively prompting users to perform energy-saving activities. The
atter includes switching the lights off when they exit a room, turning
he A/C off when the external weather conditions allow it, or min-
tes before they leave for work, and so on. That is made possible
y analyzing users’ profiles and detecting habitual actions that are
6

radually shaped to promote energy efficiency. Commercial approaches a
and products such as SENSE or Neurio provide accurate recording of
energy consumption but still rely on users’ decision to save energy.
They do not provide recommendations for energy-saving actions. Also,
they do not address these recommendations at the right moment to
increase the acceptance of recommendations and the resulting impact.
Moreover, the (EM)3 integrates the concept of explainability into the
recommender engine, which represents an essential component of the
overall solution. That is to increase the recommendation acceptance
rate and incentive end-users to adopt recommended actions. Whereas
the use of explanations in recommender systems is still in its infancy,
no commercial energy-saving solution has already been built using the
explainable recommender systems.

The proposed (EM)3 solution overcomes all the aforementioned
limitations in one solution by (i) combining sensors and smart-plugs;
(ii) taking into account users’ habitual actions and focusing on the
most promising to behavioral change and the most beneficial ones (in
energy-saving); (iii) capitalizing on the interaction with the users who
take the final decision for an energy-saving action or can decide to au-
tomate this process. In addition, the emphasis is on recommendations’
acceptance, so they are persuasive, addressed in the proper context,
and aware of user needs and habits. Visualization and comparative
analytics add to the effectiveness of the action recommendations and
help transform habitual users’ behaviors.

3. Micro-moments based energy efficiency solution

Although there are some hardware and software products avail-
able for this area, none appears to be based on the ‘‘micro-moment’’
paradigm to monitoring and analyzing human activity within house-
holds. Specifically, most of them are based on cloud computing. How-
ever, we present an edge-based solution in our case, which makes
the subject technology novel in its approach. Beyond its technical
foundation, the technology subject also appears to compare favorably
with features and functionality. It also appears to be expandable to
cover additional parameters such as humidity and temperature.

This section presents a detailed description of the (EM)3 based
nergy-saving solution, which is developed for inducing conscious en-
rgy consumption behavior. That is possible using a micro-moment

nalysis that helps detect abnormal energy consumption events and
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Fig. 2. Flowchart of the (EM)3 energy-saving solution based on micro-moment behavioral change.
a recommender system to provide end-users with tailored and timely
advice (Alsalemi et al., 2020b). Fig. 2 illustrates the (EM)3 framework,
which encompasses a set of components as follows:

1. Data collection: gathers electricity consumption footprints, occu-
pancy patterns, and ambient conditions.

2. Micro-moment analysis: identifies abnormal power consump-
tion behaviors using an ensemble bagging tree (EBT) classi-
fier (Himeur et al., 2020; Sayed et al., 2021b)

3. Recommendation and automation: provides end-users with tai-
lored recommendations for endorsing responsible energy use and
possibility for monitoring appliances (Chronis et al., 2020)

4. Statistics and visualization: offers end-users their energy con-
sumption statistics effectively and engagingly through a mobile
app and facilitates the visualization of anomalous consumption
data.

3.1. Data collection

The (EM)3 solution includes two main hardware components, a
smart plug, and a mobile app. In this context, the smart plug en-
compasses sensing devices that are used to capture data and safely
store them in a secure database (Alsalemi et al., 2020). Accordingly,
it records ambient conditions (i.e., indoor temperature and humidity,
room luminosity, and occupancy patterns) and power consumption for
various domestic devices (e.g., light bulb, computer, TV, etc.). It also
provides contextual micro-moment information, including operating
an appliance, and adjusting the settings of an appliance, visualizing
anomalous consumption of an appliance at a given time (Alsalemi
et al., 2020a). Moreover, multiple smart plugs are installed at the
building to collect rich micro-moment-based data. On another side, a
No-SQL CouchDB server database is utilized for storing data, i.e., end-
users micro-moments and occupancy data, user preferences and habits,
power-saving recommendations, and its acceptance level.

3.1.1. Scalability
In addition to the low-cost property of the (EM)3 solution, scalability

is one of the main advantages of such architecture. In effect, it provides
both embedded and external plug-and-play connectivity. Because every
device is managed independently or in combination with other appli-
ances based on the end-users preferences and habits, the (EM)3 solution
7

could seamlessly scale to more scalable case scenarios with other
appliances and monitoring options needed. Moreover, the requirements
essential to implement the solution are resource-efficient thanks to
its reliance on low-cost yet high accuracy sensors and open-source
software and hardware building blocks. Also, it does not depend on
the number of observed appliances, and hence it is virtually effortless
to expand this application in larger spaces.

3.1.2. Privacy preservation
When speaking of the marketability of energy efficiency frame-

works, it necessitates a deeper look into the incumbent issues sur-
rounding data management strategies, particularly ones concerned with
end-user privacy. The growth of cloud computing has allowed unique
access to data through possibly secure Internet servers. Many cloud
providers have real-time (or nearly real-time) data transactions. They
can also include a bundle of additional helpful functionality for end-
users to improve the collection and analysis of data. As a result, in the
grand scheme, cloud computing is on the rise to become the default
data storage choice, especially for energy-efficient systems.

On the other hand, privacy and cyber security problems emerge,
particularly in cloud-based solutions. Questions as to whether the data
is fully secure on a third-party server can become severe. Also, even
though the data is stored on a cloud server operated by the data
owner, concerns regarding the device’s reliability can come to light. For
instance, how well is the device secured against cyber attacks? Hence,
this survey is of critical significance when working with comprehensive
energy profiles that can be used in harmful ways.

In this context, that is one of the main reasons behind focusing on
local data storage disconnected from the Internet and available only to
end-users in the ‘‘intranet’’ of the building (e.g., a house, an education
building, a workspace, etc.). Security is virtually assured in terms of
data protection and external threats (except when physical interference
occurs or where the intranet is hacked). All in all, a local storage
solution may be deemed plausible if no external internet link is needed.

However, a device disconnected from the Internet will quickly
become redundant due to the continuous change in end-user behaviors,
behavior patterns, and subsequent analyzes of those changes. If the
data quality does not alter, the retraining of ML algorithms with new
external data is appropriate. Inevitably, a hybrid model would emerge,
providing a balance between local storage and cloud processing. Criti-
cal data may be stored on-site on a private cloud server. Open datasets,
device algorithms, and user interfaces can be maintained on a cloud
platform on the Internet.
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Table 3
Micro-moment classes definition and description for anomaly detection.
Label Class Micro-Moment Description

0 Good consumption <95% of appliance’s maximum active power consumption rate
1 Turn on Switch on an appliance
2 Turn off Switch off an appliance
3 Excessive consumption >95% of appliance’s maximum active power consumption rate
4 Consumption while outside Appliance consumption if on while occupants are not present
3.2. Data analysis and anomaly detection

To define normal or abnormal consumption, a micro-moment anal-
ysis is conducted on the collected time-series power consumption data.
Therefore, the micro-moment classes are identified to describe power
consumption observations of each appliance, they have been drawn
using the occupancy profile analysis (𝑂) and power consumption (𝑝)
of every domestic appliance with regard to device operation time
(𝐷𝑂𝑇 ), device standby power consumption (𝐷𝑆𝑃𝐶) and device active
consumption range (𝐷𝐴𝐶𝑅). In doing so, the micro-moment classes
are defined as ‘‘class 0: good usage’’ refers to the case when power
consumption is less than 95% of the maximum active consumption
rate; ‘‘class 1: turn on the appliance’’ refers to the micro-moment when
the end-user turns an appliance on, ‘‘class 2: turn off the appliance’’
represents the micro-moment of switching off an appliance. These two
classes are fundamental as they describe the intent-driven moments of
decision-making, i.e., starting a consumption or stopping it; ‘‘class 3: ex-
cessive consumption’’ is an abnormal consumption that is related to the
case of having an excessive consumption, either by exceeding 95% of
the maximum active consumption rate or exceeding the DOT; and ‘‘class
4: consumption while outside’’ refers to the case of consuming energy
while the end-user is absent. That is considered abnormal consumption
for an ensemble of device categories, including the air conditioner
(A/C), television, light lamp, desktop/laptop, and fan. Accordingly,
for these kinds of appliances, the presence of the end-user during
their operation is a must to not consider their energy consumption as
abnormal. Table 3 summarizes the micro-moment classes defined and
detected in this framework to analyze end-users power consumption
behavior.

The last two categories result in losing a considerable amount of
energy. Therefore, it is of essential to detect this kind of anomalous
consumption and correct end-users’ behaviors. That is achieved via pro-
moting end-users with personalized advice via the (EM)3 mobile app,
which notifies them to take energy-saving actions when an anomalous
consumption behavior is detected.

The adopted strategy for clustering the energy observations into the
micro-moment classes (M2C) over time can be described as follows:

• Step 1. Micro-moments definition: energy consumption obser-
vations 𝑝 of each electrical device and occupancy patterns 𝑂
gleaned at a sampling rate 𝑡 are firstly gathered and saved into
a database backend. Following, the aforementioned appliance
operation criteria, i.e., 𝐷𝐴𝐶𝑅, 𝐷𝑂𝑇 and 𝐷𝑆𝑃𝐶 are defined to
be used later for classifying each energy pattern into a specific
micro-moment class. Table 4 illustrates a typical example of vari-
ous device operation specifications, which have been employed
in the rule-based algorithm for extracting energy consumption
micro-moments.

• Step 2. Rule-based micro-moment extraction: a rule-based
algorithm is introduced for extracting the micro-moment classes
of the energy usage observations 𝑝(𝑡), as it is described Algorithm
1.

• Step 3. Anomaly detection using EBT: in this stage, each power
consumption observation of a specific micro-moment group is
classified using the labels generated in the previous step. To
that end, the EBT classifier is deployed, which is a low-cost yet
powerful classification model. It is mainly suitable for edge-based
applications due to its low computational complexity, although
8

Algorithm 1: Proposed rule-based algorithm for extracting power
consumption micro-moment features.
Result: M2C: the vector of micro-moment features
Read 𝑝, 𝑂,𝐷𝐴𝐶𝑅,𝐷𝑂𝑇 , , 𝐷𝑆𝑃𝐶 and 𝑂𝑇 : operation time;
Initialization: M2C = ∅ while 𝑡 ≤ 𝑙 (with 𝑙 is the length of the
power signal) do
Rule 1: Non-excessive usage
if 𝑝(𝑡) ≥ 𝑚𝑖𝑛(𝐷𝐴𝐶𝑅) and 𝑝(𝑡) ≤ 95%× max(𝐷𝐴𝐶𝑅)

M2C(t) = 0 (Good usage);
Rule 2: Switching on a device
if 𝑝(𝑡) ≥ min(𝐷𝐴𝐶𝑅) and 𝑝(𝑡 − 1) ≤ max(𝐷𝑆𝑃𝐶)

M2C(t) = 1 (Turn on device);
Rule 3: Switching off a device
if 𝑝(𝑡) ≤ max (𝐷𝑆𝑃𝐶) and 𝑝(𝑡 − 1) ≥ min (𝐷𝐴𝐶𝑅)

M2C(t) = 2 (Turn off device);
Rule 4: Consumption exceeds 95% of DACR or DOT
if 𝑝(𝑡) ≥ 95%× max(𝐷𝐴𝐶𝑅) or 𝑂𝑇 (𝑡) ≥ 𝐷𝑂𝑇

M2C(t) = 3 (Excessive consumption);
Rule 5: Consumption without presence of the end-user
if 𝑂(𝑡) = 0 and 𝑝(𝑡) ≤ 0.95× 𝐷𝑆𝑃𝐶

M2C(t) = 4 (consumption while outside);
end

Table 4
Power consumption specifications for different home appliances.

Appliance DOT DACR (watts) DSPC (watts)

Air conditioner 15 h 30 min 1000 4
Microwave 1h 1200 7
Oven 3h 2400 6
Dishwasher 1h 45 min 1800 3
Laptop 12 h 42 min 100 20
Washing machine 1h 500 6
Light 8 h 60 0
Television 12 h 42 min 65 6
Refrigerator 17 h 30 min 180 0
Desktop 12 h 42 min 250 12

it did not receive its merit in the literature and practical frame-
works. Indeed, its importance comes from the fact that it could
attain excellent classification performance using an aggregation
of different weak classifiers.
The concept of EBT is straightforward and based on the bagging
idea, which is also named bootstrap aggregation. The latter is
based on fitting diverse independent training models and then
averaging their prediction outputs. That helps in obtaining a
new model with better performance and lower variance. Unfortu-
nately, fitting completely independent models is almost impossi-
ble in practice since it requires a massive amount of data. To that
end, the approximate property of bootstrap ensembles (i.e., inde-
pendence and representativity) is used for fitting models, which
are almost independent.
Accordingly, different bootstrap sets are firstly created while ev-
eryone is acting as another (almost) independent dataset derived
from the true distribution. Following, a weak classifier is fitted for
every set before aggregating all of them by average their outputs.
That results in a new ensemble model with better classification
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Fig. 3. A simple explanation of the EBT classifier used to classify energy
micro-moments and detect anomalies.

accuracy and minor variance than its components. Put differently,
because bootstrap sets are roughly independent and identically
distributed (i.i.d.). Hence the same can be said for learned base
classifiers. Typically, when we average the prediction outputs of
weak classifiers, we reduce its variance, which is the concept of
i.i.d., i.e., the variables are randomly averaged.
In this context, energy micro-moment patterns extracted using the
rule-based algorithm are divided into 𝑚 bootstrap groups (each
one includes 𝑆 samples):
{

𝐵1, 𝐵2,… , 𝐵𝑚} = {𝑏11, 𝑏
1
2,… , 𝑏1𝑆}, {𝑏21, 𝑏

2
2,

⋯ , 𝑏2𝑆},… , {𝑏𝑚1 , 𝑏
𝑚
2 ,… , 𝑏𝑚𝑆}

(1)

where every weak classifier is trained on a specific group via
a tree procedure, and therefore an ensemble of probabilities
𝑤1, 𝑤2,… , 𝑤𝑚 is produced. Moving on, a majority vote is con-
ducted for estimating the final probability 𝑊 , as follows:

𝑊 = argmax(𝑤1, 𝑤2,… , 𝑤𝑚) (2)

Therefore, 𝑊 refers to the probability of the ensemble model with
a lower variance. Lastly, the final classification decision is then
produced using the predicted probability. Fig. 3 presents the block
diagram of the EBT classification adopted in this framework.

.3. Explainable recommendation generation

The (EM)3 ecosystem integrates a recommendation system based
n combining data from various sensors, smart meters, actuators and
hen arranging a software application, which helps in endorsing energy-
aving via the generation of intelligent, tailored, and explainable rec-
mmendations. The (EM)3 framework is the first energy-saving solu-
ion that assists the end-users with explanations for supporting their
ecision-making, increasing their trust, and improving the acceptance
f recommendations. The overall architecture of the (EM)3 recommen-
ation system is depicted in Fig. 4, which also shows the interactions
etween the sensor, actuator, software, and knowledge storage com-
onents. The energy-saving framework implemented in (EM)3 is based
9

n using the anomaly detection feedback and a series of scenarios that
nable detecting extraneous device use and properly combining multi-
odal data in order to reduce wasted energy. Precisely, (EM)3 forecasts

he micro-moments corresponding to a user action and pro-actively
enerates personalized advice that can further decrease energy con-
umption. Moreover, appliances working without the user’s presence
re automatically detected, and the user is notified to turn them off.

The aggregation of multi-modal data is deployed at the first stage to
xtract information about the user’s status, the building and the outdoor
nvironment, and their relations. For example, using the input from
he smart-plug and the inside and outside temperature and humidity
ensors, it is possible to detect a case of unnecessary air conditioning
sage and recommend actions that can stop it or help avoid it. The
nowledge abstraction module (KAM) of (EM)3 allows efficient han-
ling of the large amount of data generated from the sensors and smart
eters. It also generates aggregated user statistics that depict recent
ser habits, recent indoor and outdoor conditions patterns, and advan-
age knowledge. The latter concerns the combination of conditions and
ser actions, e.g., room occupancy probability at any given time, the
referred indoor light level thresholds for each user, etc.

Real-time room occupancy, appliance consumption, and
nvironment-related data, along with knowledge about user habits
rom the Knowledge base, are fused into the data fusion module
DFM), which detects moments for triggering energy-saving actions.
nstead of directly applying such automation, (EM)3 builds on the
abit loop theory of behavioral change and uses these moments for
uilding a better energy-saving profile. The platform issues actionable
ecommendations to the users in real-time and asks for user feedback
efore performing the recommended actions. These special moments
re denoted as the energy micro-moments, and information about user
references and habits is stored in the system’s knowledge base.

.4. Data visualization using the (EM)3 mobile app

The (EM)3 architecture uses the (EM)3 mobile app, which aims to
oost energy saving by providing end-users with innovative visualiza-
ions of their consumption footprints in real-time. The (EM)3 mobile
pp has been built upon the Home-Assistant open-source platform,2
hich enables to provide end-users with recommendations and gath-
rs user feedback (i.e., accept, reject, or ignore). Fig. 5 portrays the
ssential screens of the (EM)3 mobile app. Accordingly, it demon-
trates the mobile app’s functionalities where the end-users can receive
otifications regarding their energy consumption with areas of im-
rovement. Moreover, the (EM)3 mobile app helps end-users visualize
heir consumption footprints and the surrounding environmental data.

. Technical validation

.1. Scenario I: Data collection

In terms of the hardware implementation, the smart plug encom-
asses a printed circuit board (PCB), a 3D-printed casing, a plug, and a
ocket extension, as illustrated in Fig. 6(a). The core of the smart plug is
he PCB. The board, as in Fig. 6(b), features a self-powered mechanism
hrough the line of the appliance, eliminating the need for a separate
ower source to operate it, an occupancy sensor, a luminosity sensor,
temperature and humidity sensor. Also, a relay is included to enable

emote appliance operation. In addition, invasive energy monitoring is
mployed due to the direct connection with the appliance. It is worth
oting that the system consumes an average of 45–60 mA, which is
sed in the analysis and recommendation generation processes. The
CB is conceived to accommodate two micro-controllers categories,
hich could offer the best compromise between the cost and computing
erformance. Therefore, it could support both the Arduino MKR-1010

2 https://www.home-assistant.io/.

https://www.home-assistant.io/
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Fig. 4. The core architecture of the (EM)3 system and the explainable recommendation extensions.
Table 5
Performance of the (EM)3 Smart plug per micro-controller.

User board name Processing speed (s) Communication latency (s) Cost (US $)

ESP-WROOM-32 0.16 3.19 10
Arduino MKR 1010 1.05 2.25 33.90

and the ESP32 micro-controllers. Specifically, this enables additional
testing in terms of performance and wireless capabilities. To provide
the reader with more details, we have computed and compared the
performance, communication latency, and costs in Table 5. Regarding
the cost of the (EM)3 smart plug, the latter could be built with a
cost ranging between 20 USD–40 USD depending on the used micro-
controller. That is considered highly cost-effective compared to its
capability to improve the adoption of residential power consumption
monitoring technology. Further cost reduction can be performed when
mass-producing the components, allowing for scalable deployments.

4.2. Scenario II: Anomaly detection

4.2.1. Anomaly detection performance
To validate the (EM)3 solution for the anomaly detection, we pro-

ceed with the tests on (i) real-world data collected via QUD and DRED
datasets and (ii) simulated dataset (SiD) that is produced to fit the end-
users daily consumption in a typical building. Moreover, the empirical
evaluation is conducted in comparison with various ML classifiers,
i.e., logistic regression (LR), linear discriminant analysis (LDA), support
vector machine (SVM), naive Bayes (NB) decision trees (DT), random
forest (RF), multi-layer perceptron (MLP), k-nearest neighbors (KNN)
and deep neural networks (DNN). Fig. 7 illustrates the obtained results
10
with reference to (a) accuracy and (b) F1 score. It has been seen that
the proposed EBT classifier outperforms the other classifiers under the
three datasets. Accordingly, using EBT, more than 1.2%, 1.3%, and
2.7% accuracy improvement have been obtained compared to DNN
(which is ranked in the second position) under QUD, DRED, and SiD,
respectively. On the other hand, more than 1.8%, 1.85%, and 3.3% F1
score improvements have been achieved compared to DNN under QUD,
DRED, and SiD, respectively.

4.2.2. Electricity saving rate
To assess the energy-saving potential of the (EM)3 solution, we

first measure the number and percentile of detected anomalous events
under the three datasets considered in this framework. Table 6 sum-
marizes the number and percentage of patterns detected in each class,
including those referring to abnormal usage (i.e., class 3: excessive
energy consumption and class 4: consumption while outside). Specif-
ically, it has been seen that abnormal usage (class 3 + class 4) states
67.49%, 68.67%, and 28.66% under QUD, DRED, and SiD, respectively.
Therefore, it is evident that massive anomalous behaviors have been
detected in both QUD and DRED, which means that by following the
recommendations generated by the (EM)3, a large amount of energy
could be saved (more than 68% of consumed energy). On the other
side, moderate anomalous energy usage has been identified under SiD,
which has attained 28.66% of total used energy. Consequently, more
than 28% of electricity could be saved in the case of SiD.

A real-world experiment was conducted by three users from the
research team at Qatar University energy lab (QUEL), which includes
different cubicles that in turn incorporate many appliances used by
each user. Thus, the system was installed in QUEL, as a proof-of-
concept. Fig. 8 portrays the overview of the test-bed used to validate
the energy-saving solution based on the recommendation system. The
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Fig. 5. (EM)3 mobile app built upon the Home-Assistant platform, denoting, the (left) environmental data, (middle) power consumption visualization with appliance control, and
(right) generated recommendations.
Fig. 6. Anatomy and PCB of the implemented smart plug.
data collected is then saved to the QUD repository. In this regard, based
on the time-series data collected during the experiment, normal and
abnormal patterns were identified, and their percentiles were calcu-
lated with regard to the overall number of observations (as explained
in Table 6). Typically, excessive consumption represented an abnor-
mal percentile of 8.42%, while consumption while outside attained
an abnormal percentile of 59.07%. Therefore, the overall abnormal
percentile was 67.49%. Also, the average monthly energy consumption
has been recorded for two consecutive months before using the (EM)3

and then compared with the result obtained during another month
after adopting the (EM)3 to inform the behavioral change and energy-
saving rate. Accordingly, it has been seen that up to 68.03% of energy
consumption has been saved by using the proposed solution, which
represents a slight difference compared to the previously calculated
rate using the percentile of abnormal patterns. This saving rate has
been reached because of the generated explainable recommendations
that helped the end-users correct their abnormal energy consumption
habits.
11
Similarly, the abnormal consumption percentiles that can be cor-
rected using (EM)3 for the case of DRED and SiD have also been
estimated, where they have reached 68.66% and 28.66%, respectively.
By consequence, based on the three scenarios considered in this frame-
work, it is clear that the (EM)3 can have a saving rate of 28%–
68% when end-users are provided with appropriate and explainable
recommendations.

Overall, the amount of energy that can be saved using the (EM)3

solution depends mainly on the end-users abnormal energy usage be-
haviors. For this framework, it is worth noting that 28%–68% of the
total energy consumption has been detected as abnormal. Thus, the
same quantity could be saved if personalized and explainable recom-
mendations are produced to assist end-users in optimizing their energy
consumption.
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Table 6
Number of anomalous energy patterns along with the anomaly detection rate (percentile) obtained using the (EM)3 solution for each dataset.

Micro-moment description Class label # micro-moment patterns

QUD DRED SiD

# patterns Percentile (%) # patterns Percentile (%) # patterns Percentile (%)

Good usage 0 12114 25.81 45482 32.75 59,425 56.53
Turn on a device 1 1568 3.34 3315 1.99 7780 7.4
Turn off a device 2 1569 3.34 3316 1.99 7779 7.4
Excessive consumption 3 3954 8.42 35044 21.06 6343 6.03
Consumption while outside 4 27725 59.07 79196 47.6 23,793 22.63

Total 46930 166353 105,120
Fig. 7. Anomaly detection performance of the (EM)3 solution in terms of: (a) the
accuracy, and (b) F1 score achieved under QUD, DRED and SiD datasets.

4.3. Scenario III: Recommendation generation

Based on the different types of energy efficiency recommendation
systems and the latest demand towards explainable AI solutions, it
is evident that the dimensions of Explainability and Persuasion are
almost missing in the energy efficiency recommenders. Interpretable
models focused on straightforward processes for determining the rec-
ommended items make it simpler to produce proper straightforward
justifications to explain why the model recommended each specific
item (Zhang et al., 2014). However, few contributions in the energy
conservation research area include a basis for providing explainable
recommendations.

In the recommendation generation scenario, the (EM)3 solution
builds on the ecosystem depicted in Fig. 4, in order to detect user
12
habits and provide explainable recommendations. Based on the micro-
moments based recommendation strategy, the system discerns the
moments of the daily end-user routine, which are usually tied with an
energy-related action (e.g., user exits a room) or status (e.g., the user is
asleep), or an external condition (e.g., room temperature is low). The
approach combines sensors, smart meters, and actuators and predicts
the right micro-moment to issue a recommendation. In addition to the
recommendation, the user is informed of the conditions that triggered
it before receiving a fact related to the expected savings from accepting
the recommendation. An example of this use is to learn when the user
switches the heating unit on or off in terms of time and environmental
conditions, such as temperature and humidity (indoor and outdoor),
and associate this information with the respective personalized micro-
moments. When the conditions are met for a user, the system generates
the right energy-saving action at the right moment, which can be very
helpful in reducing energy footprint (Sardianos et al., 2019).

The probability of approving a recommendation raises when the
recommendation has a function, and the purpose is explicitly justified
by the (Zhang et al., 2020) customer. In the case of energy conserva-
tion, the fundamental goal is to prevent inefficient usage of appliances.
The other goal that further decreases electricity consumption could be
to limit the use of high energy-consuming machines. In addition to the
intent of the recommendation, a variety of considerations that remind
the recipient of the advantages of the intervention can help enhance the
approval of the recommendation. persuasive fact improves the advice
and allows users create a more energy-efficient profile.

Accordingly, the (EM)3 solution includes built-in several recommen-
dation scenarios to evaluate the performance of the recommendation
engine. In the ‘‘unnecessary device usage’’ scenario, the system de-
veloped for it can discern the following criteria: (a) the end-user’s
presence in a given room, (b) the context — which refers to the indoor
and outdoor ambience i.e., temperature, humidity, luminosity, and (c)
the consumption habits with respect to used domestic appliances .
To increase the probability of a recommendation getting accepted, the
system explains the recommendation’s rationale to the user (reasoning)
and the benefits from its acceptance (persuasion).

The reasoning element of the explanatory advice focuses on pre-
senting the reason(s) for the recommendation, which, in our case, is
strongly related to the unnecessary usage of computers. As a conse-
quence, the explanation for the shutting off of a cooling or heating
system could be due to the actual atmosphere factors (e.g., temperature
and humidity or merely ‘‘apparent temperature’’) being identical to
those inside and the device is still operating. While all of these energy-
saving steps can be effectively applied using sensors and automation,
the usage of guidelines brings humans into the loop. It allows them to
determine how to meet energy saving targets (Alsalemi et al., 2020b).

The persuasion facts serve as an extension to the critical explana-
tory nature of the suggestion, which attempts to convince people to
follow the recommendation by pointing out the advantages to the
customer by following the suggested action. The Eco (a.k.a. ecological)
category of facts is directed at consumers who prefer the environmental
aspects of their energy use. Such examples are meant to improve per-
suasiveness and serve as a motivation element for consumers involved
in positive ecological behavior but who require a catalyst to inspire
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Fig. 8. Overview of the test-bed used to evaluate the (EM)3 solution.
Fig. 9. Average recommendation acceptance ratio and standard deviation for plain recommendations, explainable recommendations, persuasive recommendations cases.
them. The Econ (a.k.a. economic) form of advice targets people who
value their financial savings over the world. It is an alternative to the
Eco form of advice for consumers who are mainly worried about the
financial aspects related to energy usage (electricity or gas).

Fig. 9 illustrates the evaluation of the energy-saving recommenda-
tions, only 16.5% of the issued recommendations have been ignored.
When comparing plain recommendations with their explainable and
persuasive versions, we identified that the persuasive insights boost the
average acceptance rate from 51% to 55%. On the other side, using the
explainable and persuasive recommendations, the performance is 19%
higher than using only plain recommendation messages, reaching an
acceptance ratio of 70%.

5. Economic potential analysis

After analyzing the technical contributions of the (EM)3 solution,
it is of utmost importance to investigate its economic potential on
the profitability of the energy-saving-based behavioral change on the
building’s energy consumption. In this way, from an economic point
of view, the motivation behind the use of energy efficiency based
on behavioral change solutions is discussed. Moreover, the economic
analysis helps in designing the business model of the (EM)3 solution,
13
addressing various market failures, and by contrast exploiting market
drivers that help in commercializing this solution.

The economic analysis can be performed with reference to the
following points:

• Technology’s maturity level: according to the setup information
of the energy-saving based on behavioral change and micro-
moments, the subject technology appears to be in the early stages
of development, with crucial components yet to be defined and
developed to the working prototype stage.

• Intellectual property: following a thorough investigation of the
literature, no patent application has been filed for such tech-
nology, nor have its technical details been publicly disclosed.
Therefore the subject technology may be covered under Trade
Secret.

• Possible competing products: we found no commercially avail-
able systems that utilize the micro-moment concept to analyze
human behavior within the home/building and make suggestions
based on that data. Also, we did not find any system that clearly
provides a more robust feature set. Therefore, the functionality
and approach of the subject technology appear novel and may
have commercial applications.
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• Possible competing patents: our brief review of recent patenting
indicates a high level of activity involved in developing tech-
nologies related to home energy monitoring and management.
However, we did not find any single patent or application that ev-
idently combines the same features, functionality, and approach
as the subject technology, particularly the use of micro-moments.

• Possible competing R&D: recent publicly disclosed R&D appears
to indicate a moderate to light level of interest in home en-
ergy monitoring, with perhaps 10 to 20 (or so) recent projects
which could represent likely competition in the near future. For
instance, one energy monitoring system based on detecting and
classifying human activities within the home claims an 18%
reduction in energy consumption. We found no single project
based on micro-moments, nor did we find any project that offers
a feature set that compares favorably with the subject technology.

• Examples of Potential Targets: a list of potential targets has
been described previously in this paper, including SENSE, En-
ergyWatch, EnergyCAP, MACH Energy, Dude Solutions, among
others.

.1. Business model

In general, the ‘‘business model’’ refers to estimating the economic
otential and commercialization prospective of a given solution (Oster-
alder et al., 2010). That is achieved by discussing the services to be
rovided, their identified target market (market drivers and barriers),
heir competing alternatives, and their anticipated expenses. Therefore,

business model is of relevant importance for deciding whether to
roceed with commercialization or not.

A proper business model for the (EM)3 solution elaborates on its
otential to create and deliver value to the potential stakeholders
e.g., prosumers, energy network operators, aggregators, etc.) and how
hey can get remunerated for their engagement. Typically, the business
odel is created using the business model canvas (BMC),3 which is a

trategic management template offering a visual representation with
omponents illustrating the value proposition of a new solution, key
artners, costs, customers, etc. That assists researchers in aligning their
ctivities following the potential trade-offs. Based on the main sections
f the BMC methodology (Kristensen and Ucler, 2016), we describe in
his section the various aspects of our business model. Typically, three
odels have been identified as a good fit for the solution: software-as-a-

ervice (SaaS), platform-as-a-service (PaaS), royalty, and licensing. The
usiness model outlined below will consider a dynamic combination of
ll the above.

The Value Proposition of our solution comprises several bene-
its for the users. The envisioned solutions and products will ensure
echnological innovation, prosumer–consumer empowerment, energy
avings without compromising comfort levels, a balanced mix of all the
equired actors of the market value-chain, up-to-date service (software)
elivery, as well as cost and time effective solution acquisition over the
orecast period (i.e., 2021–2030).

The network of Key Partners comprises the following stakeholders:
i) the (EM)3 consortium members, (ii) commercial ICT infrastructure
roviders, (iii) (EM)3 partners, (iv) energy retailers, (v) energy network
perators, (vi) local authorities, and (vii) housing associations.

The Key Activities, which will ensure that the envisioned solution
ill provide and deliver its anticipated value proposition. The Key
ctivities defined here help ensure that the proposed business model
an work effectively and efficiently. Primary activities include the
ollowing: (i) market R&D, (ii) evaluation of customer needs, (iii)
ssignment of resources, and (iv) marketing.

The identification of Market & Customer Segments is vital in order
o get a better picture of the types of groups we are aiming the proposed

3 https://www.strategyzer.com/canvas/business-model-canvas.
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o

solutions to be part of. To define customer segments for the envisioned
solutions, the groups of individuals need to be determined based on
their needs, behaviors, and other traits they share. The identified
actors and stakeholders benefiting from the solutions comprise, among
others: (i) private/public building owners, (ii) residential consumers,
(iii) regional and national companies in the utility and IT, sector in
regards to energy solutions for buildings, (iv) energy utility compa-
nies, aggregators, energy network operators, local service/technology
providers, and (v) environmental associations and non-governmental
organizations (NGOs).

Moreover, the envisioned product aims to address a diversified
market. The customers we aim to provide these solutions to all have
different requirements and needs related to energy efficiency and data
visualization. The defined customer segments have few overlaps. How-
ever, we see value in investing in all of these diverse segments, includ-
ing:: (i) evidence-based results on the costs and benefits of ICT-enabled
energy efficiency techniques, (ii) clear and real-time guidance, (iii)
exploiting micro-moments to create recommendation systems, (iv) data
transparency, (v) usable interface design, (vi) ICT Resources escalation,
(vii) behavioral engineering, (viii) adaptive incentivization, and (ix)
support for exploiting the solution.

The effective distribution of the solution also depends on identify-
ing the Distribution Channels, Customer Relationships, and Revenue
streams.

The Distribution Channels can be used to present and promote the
olution to the potential customers. It is essential to create as many
hannels and activities as contextually suitable to spread the message
ffectively. The main promotional channels comprise: (i) pilot demos,
ii) public consultation & standardization, (iii) publications, info days,
issemination activities, (iv) tech partners & their resources, (v) website
f the project and the application, (vi) social media marketing and
nfluence groups, and (vii) email campaign tools.

Various promotional activities can be considered for promoting the
eveloped solution (Osterwalder et al., 2010): (i) develop a pitch deck
o promote the solution to potential sponsors and/or investors; (ii) set
p Google Alerts: Detect where people are talking about the problem
he app solves. Also, track where people are talking about the app
irectly by setting up a branded keyword alert; (iii) promoting through
ocial media channels (e.g., Twitter, LinkedIn, Instagram, Facebook,
tc.) (iv) app localization according to market surveys of different focus
roups; (v) A/B testing: run pilots of different app versions to different
ocus groups; (vi) search engine optimization; (vii) in-campus promo-
ion: directly target audiences with physical means, i.e., billboards,
osters in academic and corporate premises; (viii) promo video to be
sed in traditional media and digital (viral) channels; (ix) appeal to app
eview sites to feature the solution; (x) respond to all reviews: provide
ersonalized communication to existing and potential users; (xi) apply
or awards; (xii) write press releases; and (xiii) write email newsletters.

The Customer Relations define the types of relationships that will
e established with the specific customer segments through an array of
ifferent channels. In the case of the solutions provided, the partners
im to engage with the users through channels, such as: (i) building
recompetitive applications — proof of impact and return on invest-
ent (ROI), (ii) context-aware triggering, (iii) cultural appropriation

nd localization, and (iv) energy solution for policy development.
The strategic ways in which the project and its partners seek to be

aid for the developed solution and their services are depicted in the
evenue Streams & Pricing Models section of the BMC. Questions

hat must be answered include: (i) what value the customers are really
illing to pay, (ii) for what do they currently pay, (iii) how they

urrently are paying, (iv) how they would prefer to pay, and (v) how
uch each Revenue Stream will contribute to overall revenues. The
ain identified revenue streams comprise: (i) smart Energy Dashboard

ubscription, (ii) mobile App revenues (Freemium), (iii) customization
nd professional services, (iv) consulting, and (v) white label platform

ffering (PaaS).

https://www.strategyzer.com/canvas/business-model-canvas
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Fig. 10. BMC describing the key sections for the SaaS approach .
c

The Key Resources section defines the necessary resources and
kills which help to make this business model and value proposi-
ions work. It also emphasizes which distribution channels and cus-
omer relationships need to be analyzed to realize the proposed rev-
nue streams. In order to interact with the digital world, the envi-
ioned solutions will need to rely on a sound commercial ICT infras-
ructure. Furthermore, to effectively spread the message, it is criti-
al to engage in academic research, ‘‘labs & pilots’’. Indeed, when
anting to increase energy efficiency, for any scenario, valid energy

onsumption ‘‘data & models’’ are necessary; these will rely on a
eal-life customer base and be created with intelligent data analytics
ools. For a well-suited business model to be established, the chan-
els through which customers will be reached need to be discussed
nd explored. These will mainly encompass business-to-business (B2B),
usiness-to-consumer (B2C), and R&D pathways.

Finally, the Cost Structure section involves an estimate of the most
substantial costs inherent in the business model. Additionally, it evalu-
ates which Key Resources and which Key Activities are most expensive.
Throughout the duration of the project, the main costs are identified as:
(i) market research, (ii) dissemination activities, (iii) business model
development, (iv) manufacturing, (v) deployment, (vi) human capi-
tal development, (vii) platform R&D infrastructure, (viii) community
awareness services, and (ix) marketing expenses. Once developed, the
solution will mainly include the costs related to handling customer
requests and retaining the audience and costs corresponding to human
resources required for the further development and maintenance of the
assets.

The developed assets will be mainly distributed through three meth-
ods: (i) SaaS, ii) PaaS, and (iii) royalty and licensing payments. As
mentioned above, for developing the business model prototype, the
BMC was used as guidance. To get a more compact view of the identi-
fied sections, the partners have combined them into a comprehensive
illustration. Fig. 10 identifies the critical sections for the SaaS approach.

5.2. Market barriers

Various market barriers in state-of-the-art hinder the overall adop-
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tion of energy efficiency-based behavioral change solutions. In our
case, we have identified a set of possible market barriers that could
be outlined as follows:

1. High installation costs accompanied by system complexity are
envisaged to raise difficulties to the market’s growth over the
reference period.

2. A number of prominent players are already active in the home
energy monitoring market. This includes global companies such
as Honeywell International,4 General Electric,5 Comcast Ca-
ble (Xfinity)6, Panasonic,7 and others. These may comprise a
formidable challenge to new entrants hoping to gain market
share.

3. Lack of consumer awareness concerning home energy man-
agement systems (HEMS), behavioral change and the advan-
tages/profits they offer may impede the marketability of the
proposed solution.

5.3. Market drivers

On the other hand, we have determined an ensemble of possible
market drivers, which are defined as the forces that push individuals
to purchase the (EM)3 product and pay for the proposed services. They
ould be summarized as follows:

1. The widespread use of smart meters, rising investments re-
lated to the smart grid technologies, and growing attention
to reducing energy cost by the efficient deployment of power
resources are envisaged to driving the market for the hardware
segment over the forecast period, with the fastest growth in the
Asia-Pacific region (Hossein Motlagh et al., 2020).

4 https://www.honeywell.com/us/en.
5 https://www.ge.com/.
6 https://www.xfinity.com/.
7
 https://www.panasonic.com/global/home.html.

https://www.honeywell.com/us/en
https://www.ge.com/
https://www.xfinity.com/
https://www.panasonic.com/global/home.html
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2. Environmental concerns and increasing energy cost have com-
bined to drive interest in making more efficient energy use at
home. The necessity for conserving and optimizing energy usage
is considered a key market driver.

3. It is anticipated that North America will dominate the energy
monitoring market during the forecast period. Such region con-
centrates on improving and changing their aging infrastruc-
tures, enhancing grid reliability, and allowing more intelligent
electrical networks, which could boost the demand for energy
monitoring systems. Furthermore, the U.S. and Canadian electric
utilities are intended for investing USD 880 billion and USD
100 billion, respectively, in electrical and energy networks over
the upcoming years 2020–2030 (Andoni et al., 2019). These
investments would incorporate different sectors, such as smart
grid, digitization, energy monitoring, energy management, and
blockchain.

4. Increasing connectivity and widespread endorsement of mobile
phones is also expected to positively impact energy market
growth.

5. The rising consciousness among energy end-users regarding
durable energy usage stimulates demand for energy-efficient
devices and HEMS. End-users understand that those systems
could not only reduce energy expenses, but they are also playing
a significant role in making the existing energy resources more
sustainable.

6. Demand for HEMS and monitoring devices has assumed greater
importance over the last few years due to the use of vari-
able pricing approaches provided by service providers. Advan-
tageous regulatory policies/initiatives in the U.S. related to en-
ergy conservation are intended to incite regional HEMS market
growth.

7. Other significant factors driving the HEMS market include the
rising Internet penetration across both developed and developing
economies, the increasing role of IoT and big data analysis in
energy management, booming market for intelligent buildings,
etc.

8. The technological development and propagation, together with
the reduced sensor and display costs, improved device-level data
processing potential, and roll-out of smart utility meters, offer
new paths for energy management market growth.

5.4. Commercialization strategy considerations

We believe that the development, commercialization, and eventual
market introduction should proceed for the subject technology. One of
the first steps could be to seek intellectual property protection in the
form of a patent, particularly the part related to its utilization of micro-
moments to track and analyze user behavior and activities. However, if
protection can be obtained, this may make the subject technology more
attractive to potential licensees. It could also make it more difficult
to ‘‘reverse engineer’’ products based on micro-moments. When the
subject technology is nearing commercial introduction, a campaign
to educate the market should be carefully prepared and undertaken.
We feel that users could likely make purchasing decisions based on
features, functionality, and value rather than the novelty of the funda-
mental technological approach. Therefore, the performance advantages
of the subject technology need to be identified and emphasized. As
noted above, one challenge facing the home energy monitoring market
is the lack of awareness and understanding among potential customers.
This challenge needs to be carefully addressed, with users provided a
clear understanding of the subject technology’s benefits over currently
available options.

Moving forward, the key findings regarding the commercial poten-
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tial for the proposed technology could be summarized as follows:
• Likely markets and basis for feasibility: the home energy moni-
toring, which refers to a multi-billion dollar (and growing) global
market opportunity, and several positive factors appear to be
driving future growth.

• Indicator(s) suggesting how ample the market opportunity might
be: the global HEMS market was worth US$ 1.6 Billion in 2018.
Looking forward, the market value is projected at US$ 4.4 Billion
by 2024, exhibiting a CAGR of around 17% during 2019–2024.

• Product opportunities: the market niche of energy monitoring
and management technologies can likely be adapted seamlessly
into the building energy monitoring market for facilities, such as
office and municipal buildings, retail stores, sports facilities, and
factories.

5.5. Recommendations

We summarize the final decisions following the technical-economic
analysis of the (EM)3 solution conducted in this framework by gen-
erating a set of Go/No-Go recommendations. Specifically, we have
evaluated the potential of the (EM)3 solution based on the following
aspect; product, patent, research project, and commercialization con-
siderations. For each area, we have provided one of four scores from
(highest to lowest) as below and then an overall score which can be
no better than their lowest score of one area. As summarized above,
we find several strong positive drivers for this market and challenges
that do not present insurmountable obstacles. We can predict that this
market is favorable for introducing a novel and superior home energy
monitoring and management product.

In this regard, given the technical contributions of the (EM)3 solu-
tion, our commercialization strategy considerations, and all the market
drivers and impediments, a set of relevant findings have been derived
as follows: (i) we conclude a decision ‘‘Go’’ for the subject technol-
ogy, from different aspects, such as patenting the proposed idea after
making more hardware and software improvements and overcoming
the drawbacks listed above, developing the final product, and then
going forward with its commercialization. That is because we have
noticed that a more transparent economic advantage would be obtained
in comparison to existing solutions in terms of cost-effectiveness and
feature-set (e.g., providing explanations to increase the end-users trust
in the generated recommendations); (ii) the combination of anomaly
detection based on AI, explainable recommender systems, and data
visualization can lead to significant energy saving levels, which can
attain 68% of the total energy consumption as the case of the (EM)3

platform; and (iii) the percentage of energy-saving is mainly related
to the abnormal energy consumption behavior of end-users, which can
vary from a building to another.

6. Conclusion

Developing energy-saving-based behavioral change in the building
sector along with adopting efficient ICT-based systems are the im-
mediate and critical solutions to reduce wasted energy in buildings,
especially in unexpected global circumstances. The first part of this
article discussed the current research initiatives on applying technol-
ogy to curtail energy consumption and realized that implementation
in real-life scenarios is yet lagging due to the lack of marketabil-
ity and economic studies. Intending to bridge the gap between the
potential and currently accomplished energy saving solutions in build-
ings, this work covered the energy efficiency solutions landscape, from
research contributions to patents and commercial products. The sec-
ond part of this study discussed the key techno-economic findings of
this analysis, in which a novel solution was introduced along with a
techno-economic assessment. Typically, the solution includes different
technical contributions concerning data collection, data analysis and
anomaly detection, explainable recommendation generation, and visu-

alization using a mobile app. It also performed a technical validation of
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the proposed (EM)3 solution in various scenarios that verified the low
ost of the (EM)3 platform, the accuracy of its embedded prediction and
etection models, and the acceptance ratio of the recommendation it
enerates in an actual setup. Together, such characteristics appoint the
EM)3 solution a promising candidate for supporting energy-efficient
ehaviors and promoting clean, green, and sustainable environment.

The economic analysis of the proposed solution examined various
spects that affect the potential of the solution, including the maturity
f the employed technology, the handling of intellectual property,
he competitors, and the possible adopters. A comprehensive business
odel that follows the BMC methodology and records possible barriers,
rivers, and enablers allowed us to decide on the commercialization
f the proposed technology. Accordingly, recommendations for com-
ercializing the solution were drawn after evaluating its marketability
otential using a Go/No-Go evaluation.

Nevertheless, the current implementation has some limitations: the
hysical size of the plug is a drawback, which is considered bulky
ompared to other existing solutions. Also, the current sensing can
e enhanced by using more accurate monitor chips. In addition, in
erms of cyber-security, the current implementation lacks the defense
echanisms against cyber-attacks. Moving on, regarding the energy

onsumption of the heating systems, the (EM)3 solution is mainly
dapted to the buildings where heating is provided by electricity.
owever, it can also deal with other kinds of buildings that use gas
r different fuel types as it is built upon the Home Assistant platform.
he latter is the main engine for collecting and fusing data from any
oT device and delivering personalized recommendations to the (EM)3

martphone app.
To that end, it is part of our future work to investigate the use

f cutting-edge cyber security and decentralized exchange, such as
lockchain. That will reinforce the security on the edge devices and
ddress users’ privacy concerns and other security issues in some
cenarios, e.g., when sending data to cloud data centers for further
omplex processing. In addition to its security and privacy preservation
alient features, blockchain has other relevant characteristics that can
mprove the quality of service (QoS) of the (EM)3 solution, i.e., its re-
ilience, adaptability, fault tolerance, and trust features. On the another
ide, as most of the old buildings are only collecting the overall energy
onsumption, without any insights about the individual consumption
f appliances, an integration with an energy disaggregation module
s to be carried out into the (EM)3 platform. Such integration help
ecognize individual appliances and equipment responsible for any
nergy consumption in real-world scenarios.

Finally, it is worth noting that the proposed framework is considered
relevant reference for the energy research community and other

esearchers from the related topics, especially those developing energy-
aving solutions and seeking to assess the their techno-economic poten-
ial as well as devise business models for improving the marketability
f their final products and maximizing their impact.
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