6 research outputs found

    Investigations on Methods Developed for Effective Discovery of Functional Dependencies

    Get PDF
    ABSTRACT: This paper details about various methods to discover functional dependencies from data.Effective pruning for the discovery of conditional functional dependencies is discussed in detail. Di conditional Functional Dependencies and Fast FDs a heuristic-driven, Depth-first algorithm for mining FD from relation instances are elaborated. Privacy preserving publishing micro data with Full Functional Dependencies and Conditional functional dependencies for capturing data inconsistencies are examined. The approximation measures for functional dependencies and the complexity of inferring functional dependencies are also observed. Compression -Based Evaluation of partial determinations is portrayed. This survey would promote a lot of research in the area of mining functional dependencies from data

    Approximation Measures for Conditional Functional Dependencies Using Stripped Conditional Partitions

    Get PDF
    Conditional functional dependencies (CFDs) have been used to improve the quality of data, including detecting and repairing data inconsistencies. Approximation measures have significant importance for data dependencies in data mining. To adapt to exceptions in real data, the measures are used to relax the strictness of CFDs for more generalized dependencies, called approximate conditional functional dependencies (ACFDs). This paper analyzes the weaknesses of dependency degree, confidence and conviction measures for general CFDs (constant and variable CFDs). A new measure for general CFDs based on incomplete knowledge granularity is proposed to measure the approximation of these dependencies as well as the distribution of data tuples into the conditional equivalence classes. Finally, the effectiveness of stripped conditional partitions and this new measure are evaluated on synthetic and real data sets. These results are important to the study of theory of approximation dependencies and improvement of discovery algorithms of CFDs and ACFDs

    Data quality evaluation through data quality rules and data provenance.

    Get PDF
    The application and exploitation of large amounts of data play an ever-increasing role in today’s research, government, and economy. Data understanding and decision making heavily rely on high quality data; therefore, in many different contexts, it is important to assess the quality of a dataset in order to determine if it is suitable to be used for a specific purpose. Moreover, as the access to and the exchange of datasets have become easier and more frequent, and as scientists increasingly use the World Wide Web to share scientific data, there is a growing need to know the provenance of a dataset (i.e., information about the processes and data sources that lead to its creation) in order to evaluate its trustworthiness. In this work, data quality rules and data provenance are used to evaluate the quality of datasets. Concerning the first topic, the applied solution consists in the identification of types of data constraints that can be useful as data quality rules and in the development of a software tool to evaluate a dataset on the basis of a set of rules expressed in the XML markup language. We selected some of the data constraints and dependencies already considered in the data quality field, but we also used order dependencies and existence constraints as quality rules. In addition, we developed some algorithms to discover the types of dependencies used in the tool. To deal with the provenance of data, the Open Provenance Model (OPM) was adopted, an experimental query language for querying OPM graphs stored in a relational database was implemented, and an approach to design OPM graphs was proposed

    Effective pruning for the discovery of conditional functional dependencies

    No full text
    Conditional functional dependencies (CFDs) have been proposed as a new type of semantic rules extended from traditional functional dependencies. They have shown great potential for detecting and repairing inconsistent data. Constant CFDs are 100% confidence association rules. The theoretical search space for the minimal set of CFDs is the set of minimal generators and their closures in data. This search space has been used in the currently most efficient constant CFD discovery algorithm. In this paper, we propose pruning criteria to further prune the theoretic search space, and design a fast algorithm for constant CFD discovery. We evaluate the proposed algorithm on a number of media to large real-world data sets. The proposed algorithm is faster than the currently most efficient constant CFD discovery algorithm, and has linear time performance in the size of a data set

    Effective pruning for the discovery of conditional functional dependencies

    No full text
    Conditional functional dependencies (CFDs) have been proposed as a new type of semantic rules extended from traditional functional dependencies. They have shown great potential for detecting and repairing inconsistent data. Constant CFDs are 100% confidence association rules. The theoretical search space for the minimal set of CFDs is the set of minimal generators and their closures in data. This search space has been used in the currently most efficient constant CFD discovery algorithm. In this paper, we propose pruning criteria to further prune the theoretic search space, and design a fast algorithm for constant CFD discovery. We evaluate the proposed algorithm on a number of media to large real-world data sets. The proposed algorithm is faster than the currently most efficient constant CFD discovery algorithm, and has linear time performance in the size of a data set.
    corecore