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Abstract

The application and exploitation of large amounts of data play an ever-increasing

role in today’s research, government, and economy. Data understanding and decision

making heavily rely on high quality data; therefore, in many different contexts, it

is important to assess the quality of a dataset in order to determine if it is suitable

to be used for a specific purpose. Moreover, as the access to and the exchange

of datasets have become easier and more frequent, and as scientists increasingly

use the World Wide Web to share scientific data, there is a growing need to know

the provenance of a dataset (i.e., information about the processes and data sources

that lead to its creation) in order to evaluate its trustworthiness. In this work,

data quality rules and data provenance are used to evaluate the quality of datasets.

Concerning the first topic, the applied solution consists in the identification of types

of data constraints that can be useful as data quality rules and in the development

of a software tool to evaluate a dataset on the basis of a set of rules expressed in the

XML markup language. We selected some of the data constraints and dependencies

already considered in the data quality field, but we also used order dependencies and

existence constraints as quality rules. In addition, we developed some algorithms to

discover the types of dependencies used in the tool. To deal with the provenance

of data, the Open Provenance Model (OPM) was adopted, an experimental query

language for querying OPM graphs stored in a relational database was implemented,

and an approach to design OPM graphs was proposed.
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CHAPTER 1

Introduction

Data collection has become a normal function of institutions and organizations, and

data errors can creep in at every step of the process from the initial acquisition to the

storage in a repository. In particular, data acquisition from the field (e.g., through

measurements or surveys) and data entry in digital repositories are inherently prone

to errors.

The awareness of the critical importance of data quality issues has grown rapidly

in the last decades in scientific, industrial, and governmental contexts. Data under-

standing and decision making heavily rely on high quality data; for this reason, it

is important to be able to obtain such kind of data or, at least, to evaluate the

quality of a dataset to judge if it is suitable for a specific purpose. It is often nec-

essary to make decisions based on incomplete data; however, analyzing a topic or

an issue relying on data of low quality, without having knowledge of it, can lead to

wrong analysis results and decisions. Low quality data (sometime called “dirty data”

[Rahm and Do, 2000]) include missing data, erroneous data, duplicates, inconsistent

data, out-of-date data, and undocumented data.

For new archives or data collections, the prevention is obviously a fundamental

aspect; still, issues can arise in the data management process when data are derived

from other data or when a dataset results from the integration of multiple data

sources. In the data warehouse field, for example, data quality issues can arise

when different datasets are merged storing together inconsistent information or when

records referring to the same entities are present in more than one data source with

different values. Moreover, it might be necessary to deal with datasets received from

external sources without having any control on the original acquisition process.

For existing datasets an option is to attempt to cleanse data. Data cleaning

is not a simple task; it is highly context dependent, and – in many cases – data

can be cleaned effectively only with some human intervention since fully automated



Introduction 2

cleaning procedures could lead to a loss of useful information.

The discovery of incorrect data, which is the first necessary step in data cleaning,

is – in most cases – challenging; moreover, even when the presence of errors is

recognized, it is not always feasible to trace back the correct values (e.g., detecting

inconsistencies among data may not be sufficient to determine which record is at

fault), or it is not always possible to correct the data (e.g., changes in the original

dataset are not allowed).

Another relevant aspect related to the quality of a dataset is its fitness for the

intended purpose, which is one of the definitions provided for data quality, for exam-

ple, in [Juran, 1964] “Data are of high quality if they are fit for their intended use in

operations, decision making, and planning”. It may occur that a dataset containing

correct data is not useful in a specific context, for example, because a different level

of detail is requested or for insufficient data coverage. In these cases, efforts need to

be devoted to assess the quality level of datasets in order to evaluate their fitness

for the intended purpose.

In this context, the concept of data provenance can be useful; especially when in

a dataset changes on data are not allowed, it is important to be aware of the history

of the dataset (i.e., its origin and modifications) to judge its reliability.

In the present work, we focus on the evaluation of the quality of a dataset

using data quality rules and the concept of data provenance. Concerning the first

topic, the applied solution consists in the identification of types of constraints that

can be useful as data quality rules and in the development of a software tool to

evaluate a dataset on the basis of a set of rules expressed in the XML markup

language. As rule types, we selected some of the data constraints and dependencies

already considered in the data quality field, but we also used order dependencies

and existence constraints. To deal with information provenance, we adopted the

Open Provenance Model (OPM), we implemented an experimental query language

for querying OPM graphs stored in a relational database, and we proposed a method

to approach the design of OPM graphs.

As a case study, we used some datasets collected by the Joint Research Centre

of the European Commission, the Commission’s in-house science service having the

mission to provide European Union policies with independent, scientific, and tech-

nical support. The case study refers to real datasets in a context where low quality

data limit the accuracy of the analysis results and, consequently, the significance

of the provided policy advice. The case study was used to develop and test the

experimented solutions, which are anyway generally applicable to other contexts.
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1.1 Case study

In the European Union (EU) the fisheries sector is managed through the Common

Fisheries Policy1 (CFP).

Since the CFP was first established in 1983, scientific advice has increasingly

become part of the fisheries management decision-making process. The role of the

scientific advice was officially attested by the Commission Decision [European Com-

mission, 31 August 2005] that established the Scientific, Technical and Economic

Committee for Fisheries (STECF), a scientific advisory body to be “consulted at

regular intervals on matters pertaining to the conservation and management of living

aquatic resources, including biological, economic, environmental, social and techni-

cal considerations”. The European Commission is thus required by regulation to

take into account the advice from this committee when presenting proposals on

fisheries management.

The are several impediments to the rational management of marine resources,

one of them is inadequate data. Fisheries management decisions are often based on

population models, but the models need high quality data to be effective. As stated

in [Chen, 2003], the quality of fisheries data has great impact on the quality of stock

assessment2 and, consequently, on fisheries management.

The term fisheries data generally refers to data that may be useful in the man-

agement of a fishery. Such data usually include biological information about the

exploited fish, economic information about the fishermen, and information about

the environmental conditions that affect the productivity of the species.

Fisheries data are collected from different sources and can be categorized as

fishery-dependent or fishery-independent data [Cooper, 2006]. Fishery-dependent

data derive from the fishing process itself, while most of the fishery-independent

data come from research surveys conducted by scientists.

The most common sources of fishery-dependent data are landings records and

port samples. In some commercial fisheries, fishermen keep their own records, called

logbooks or vessel trip reports, collecting data on the time and place of fishing, the

effort expended, and the catch by species. Furthermore, onboard observers, who

sometimes accompany fishing vessels, can provide information on fishing activities

that are not always reported in logbooks, such as effects of fishing activities on

1http://ec.europa.eu/fisheries/cfp
2Stock assessment describes the past and current status of a fish stock; in addition, it attempts

to make predictions about how the stock will respond to current and future management options

[Cooper, 2006].
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protected species and the extent and fate of bycatch3 and discarding4.

Fisheries data have different uses and many users, including strategic planning

by industry and stock assessment by scientists. Data adequacy can be evaluated

only in the context of the purposes for which they are used. For each use, data have

to satisfy a set of requirements, including accuracy, coverage or completeness, level

of detail, timeliness, accessibility to users, and credibility of both the data collection

process and the management process that transforms and uses the data.

In order to allow the creation of a pan-European dataset to be used for policy

advice, the Commission Regulation No 1639/2001 [European Commission, 17 Au-

gust 2001] established the Data Collection Regulation (DCR), a Community frame-

work for the collection of data in the fisheries sector; afterwards, the Commission

Regulation No 665/2008 [European Commission, 15 July 2008] modified the DCR

establishing the new Data Collection Framework (DCF) for the collection, manage-

ment, and use of data in the fisheries sector with the aim to support the scientific

advice regarding the CFP.

The new framework implements a routine and systematic collection of the basic

data needed for scientific analyses and establishes rules and procedures to make

these data available to the scientific community.

All the EU Member States that are involved in fisheries or aquaculture activities

or in fish processing industry sector have to fulfill the DCF obligations. In partic-

ular, the DCF requires Member States to collect data on biological and economic

aspects of many European fisheries and related fisheries sectors providing access to

these data for fisheries management advice, scientific publication, public debate, and

stakeholder participation in policy development.

The fisheries data collected under the DCF are classified as follows:

– Economic data: employment, expenditure, capital and investments, fishing

rights, and direct subsidies;

– Biological data: length and age distribution, maturity data by age and length,

sex ratio by age and length, discards, and discards length distribution;

– Effort data: days at sea and energy consumption;

– Transversal data: capacity, landings, and prices;

3Bycatch refers to fish or other species of animals caught unintentionally.
4Discards are the portions of a catch which are not retained on board and are returned, often

dead or dying, to the sea.
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– Data from surveys (i.e., sampling at sea) about demersal species and small

pelagic species5.

The Joint Research Centre (JRC), on behalf of the Directorate-General for Mar-

itime Affairs and Fisheries (DG-MARE) of the European Commission, collects and

maintains the fisheries data reported by EU Member States under the DCF. The

datasets gathered by JRC are first checked for compliance and quality, then they

are placed at disposal of teams of independent experts who, participating in STECF

working groups, are in charge of the scientific advice.

Being the scientific advice based on the results of the analyses performed by

the experts, the assessment of the quality of the data they use is an important and

critical task. In fact, even if in the DCF regulation it is stated that “Member States

shall be responsible for the quality and completeness of the primary data collected

[...] and for detailed and aggregated data derived [...]”, there are several issues in

the quality of the data provided by Member States.

In a recent document about fishing opportunities for 2011 produced by the Euro-

pean Commission, it is reported that the scientific advice about overfishing is missing

for about two-thirds of the total allowable catches6. In most cases, this is because of

missing information on catches, incomplete surveys, or poor sampling, though there

are cases where the underlying biological issues present difficult scientific challenges

[European Commission, 2011].

The data quality checks carried out at JRC is concretely helping Member States

in assessing the quality of the data they provide and also in improving the quality of

their data management process. Detailed information about the DCF data collection

activities performed by JRC can be found in a dedicated Web site7; in addition, the

results of the data analyses performed by the experts are published on the STECF

Web site8.

1.1.1 An IP-MAP for the case study

To illustrate the processes involved in the fisheries data submission from Member

States, with particular emphasis on the activities addressing data quality verifica-

tion and improvement, we use an Information Product Map (IP-MAP), which is

a graphical language for the description of the information production processes

5Demersal marine species live on or near the bottom of the sea, whereas pelagic marine species

live near the surface of the sea.
6Total allowable catches are the catch limits for most significant commercial fish stocks and are

decided every year by the Council of Ministers of the EU.
7https://datacollection.jrc.ec.europa.eu
8https://stecf.jrc.ec.europa.eu
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[Shankaranarayan et al., 2000] (details about the constructs used to build IP-MAPs

can be found in appendix C).

The IP-MAP in figure 1.1 refers to one Member State and one dataset; the same

process is repeated for all the Member States and all the datasets involved in the

DCF. The main tasks related to data quality are shown in the diagram: domain

checks, duplicate discovery, evaluation of data quality rules, and comparisons with

other data sources.

During the data submission procedure, some preliminary checks are carried out

and Member States are informed about issues in the format of their data. At the

end of the submission procedure, other checks are performed on the data stored in

the staging database.

First of all, duplicate records and records with different values referring to the

same entities (e.g., the same fleet segment) are identified (i.e., duplicate detection

and record linkage procedures are applied).

Afterwards, data are evaluated against a set of rules which are mainly provided

by experts in the fisheries sector; in the diagram, the data quality block labeled

“evaluation of DQ rules” refers to this step.

Furthermore, for each country, coverage checks are carried out to ensure that all

the necessary data for each fleet segment have been submitted. To establish how

many and which fleet segments should be reported by each country, the National

Programmes of each Member State are consulted.

Finally, external data sources are also used to improve the consistency checks

on the received data: the Eurostat database9 and the EU Sea Fishing Fleet Reg-

ister10. Eurostat, the statistical office of the European Union providing statistics

at European level, collects also some data about fisheries (i.e., catches and landings

data aggregated at national level) and aquaculture activities. The Sea Fishing Fleet

Register is a repository where all the fishing vessels flying the flag of a Member State

have to be registered in accordance with the Community legislation; in particular,

capacity data (i.e., the number of vessels, the kilowatts, and the gross tonnages) are

requested for each fleet segment for the entire national fleet. Data from these two

archives are used to assess the consistency, at national level, of some of the data

collected under the DCF.

9Eurostat data are accessible online at http://epp.eurostat.ec.europa.eu
10Fishing Fleet Register data are accessible online at http://ec.europa.eu/fisheries/fleet/index.cfm
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1.2 Work content

The aim of the work is to explore, apply, and – if necessary – develop approaches

and tools to evaluate and improve the quality of datasets in a scientific context. The

motivation of the work is a real need to evaluate and improve the quality of data in

the context of the EU Data Collection Framework for fisheries data introduced in the

previous paragraph, but the objective is to propose solutions generally applicable

regardless of the context.

After a literature survey and a comparison of the available techniques and tools,

we decided to utilize some already existing robust approaches (e.g., database pro-

filing, exploratory data analysis, and duplicate detection) to deal with some of the

issues related to data quality; whereas the development effort mainly addressed two

topics that are relevant in the context of data quality evaluation and for which

there are not yet well-established approaches and tools: the use of quality rules and

provenance information.

The concept of rules is widely used in data management and data quality fields:

integrity constraints, functional dependencies, and business rules are types of rules

normally enforced on datasets. However, rules can play an important role also in

the data quality evaluation field. In this context, rules are not constraints to be

enforced on a database but are used to determine the quality profile of a dataset.

Data quality rules can verify not only the correctness of data but also their suitability

for a purpose. Thus, more than one set of rules can be created for a dataset in order

to verify its fitness for different purposes. Furthermore, the concept of data quality

rules can be used to quantify data quality using the results of the evaluation of the

rules in order to compute data quality metrics.

We adopted an approach in which quality constraints on data are expressed in

form of rules, and we developed a software tool for the evaluation of a dataset on the

basis of a set of rules. As data quality rule types to be used in our tool, first of all we

selected some types of data constraints and dependencies already proposed in data

quality works, for example, association rules, functional dependencies, and condi-

tional functional dependencies (the latest being functional dependencies holding on

a subset of the relation instance and recently introduced in the data cleaning context

[Bohannon et al., 2007]). In addition, we considered order dependencies [Ginsburg

and Hull, 1983] and existence constraints [Atzeni and Morfuni, 1986] because they

can be useful in the context of data quality evaluation, even if, to our knowledge,

they have not yet been used in the data quality field.

The data collected under the DCF are not well documented with provenance

information. Some information can be found in the National Programmes (e.g.,
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the description of data sampling schemes and methodological choices), but further

information can be useful to allow experts and other users to evaluate the reliability

of the data provided by Member States.

With the aim to deal with this shortcoming, we explored the possibility to ac-

company the data published on the DCF Web site with provenance information, and

we experimented the adoption of a model for data provenance recently proposed in

literature, the Open Provenance Model.

The rest of the thesis is organized as follows:

– Chapter 2 discusses the definition of data quality, introduces some classifica-

tions of data quality issues, and summarizes the current approaches used to

address them.

– Chapter 3 introduces various types of constraints and dependencies that can

be used as data quality rules.

– In chapter 4, we describe the solution adopted to verify if a dataset complies

with a set of rules expressed in the XML markup language, and we introduce

the metrics used in the context of the used case study.

– Chapter 5 presents the algorithms implemented to discover the data dependen-

cies called Conditional Functional Dependencies (CFD) and CFDp (which are

CFD with built-in predicates). These dependencies, which are extensions of

traditional functional dependencies, have been recently proposed in literature

in the data quality field.

– Chapter 6 introduces the concept of data provenance and describes the Open

Provenance Model (OPM), a model of provenance that aims to promote the

exchange of provenance information among heterogeneous systems.

– In chapter 7, we propose a method for the design of OPM graphs. The method

is composed of two phases: in the conceptual phase, concepts and their rela-

tionships are identified and mapped into OPM elements; the physical phase

refers to the serialization of the OPM graph into the corresponding XML

structure with the validation of the generated XML document.

– Chapter 8 describes the approach used to store and query an OPM graph in

a relational database: a relational schema for OPM was designed and queries

are performed on it.



CHAPTER 2

Data Quality

2.1 Data Quality definition

Considering the quality of data, the first thoughts that come to mind are the correct-

ness of data and the need to have error-free data. Certainly, this is a very important

aspect of the problem, but it is not the only one determining the quality level of

data. For this reason, different definitions for the concept of data quality have been

proposed, and still a formal one is missing. In the following, some of the several

definitions proposed in literature are introduced:

– Juran [1964] focuses on the use of data: “Data are of high quality if they are

fit for their intended use in operations, decision making, and planning”;

– according to Orr [1998] data quality “is the measure of the agreement between

the data views presented by an information system and that same data in the

real world”;

– Shanks and Corbitt [1999], following the Juran’s point of view, adopt the

definition of quality as “fitness for purpose”;

– Redman [2001] highlights data characteristics: “Data to be fit for use must be

accessible, accurate, timely, complete, consistent with other sources, relevant,

comprehensive, provide a proper level of detail, be easy to read and easy to

interpret”.

In the last reported definition, data quality is interpreted as a combination of prop-

erties or characteristics, sometime called dimensions [Scannapieco and Catarci, 2002]

to emphasize the fact that they may be quantified (even if in reality it is not often

straightforward to measure data quality characteristics); examples of these proper-

ties are: accuracy, completeness, consistency, relevance, and accessibility.
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A first survey of the proposed sets of dimensions characterizing data quality

was published in 1995 [Wang et al., 1995]. Since then, other proposals have been

presented, such as in [Naumann, 2002] and [Bovee et al., 2003]. Moreover, several

international organizations adopted their own set of characteristics defining data

quality (some examples can be found in [Bergdahl et al., 2007, OECD, 2008, Euro-

pean Commission, 31 March 2009]).

Even if there is not a common agreement on the set of properties to be used to

characterize data quality, some of them are considered particularly important (e.g.,

accuracy, consistency, and completeness) and always cited in data quality works;

still, for some of them (e.g., reliability, believability, credibility, and accessibility)

the assigned meaning can be slightly different.

The following list shows the most mentioned data quality properties both in

literature works and in reports published by institutions providing statistical data:

Accuracy is considered the most important characteristic of data quality. It refers

to the lack of errors and it is defined as the degree of correctness of a recorded

value when compared with the real-world value. Inaccurate data can be either

incorrect or out-of-date data.

Consistency means that the representation of the data value is the same in all

cases. It implies that there is no redundancy and that, in a database context,

referential integrity is enforced. Conflicting data are considered inconsistent.

Completeness is defined as the degree of presence of data in a given collection.

Validity means that an attribute is valid if its value is within a predefined value

domain.

Believability is the extent to which data are accepted or regarded as true and

credible.

Credibility refers to the credibility of the data source.

Relevance refers to the applicability of data in a particular context; it is the degree

to which data meet current and potential user needs.

Timeliness of information reflects the length of time between data availability and

the event or phenomenon they describe; it implies that the recorded value is

not out-of-date. Timeliness sometime is defined in terms of currency, how

recent are data, and volatility, how long data remain valid.

Accessibility refers to the physical conditions under which users can obtain data.
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2.2 Classification of Data Quality issues

In addition to the given definitions of data quality, it is interesting to consider more

in detail which are the problems that affect in practice the quality of a dataset.

In [Oliveira et al., 2005b] it is stated that, to measure the coverage of a tool for

the automatic or semi-automatic detection and correction of the problems that affect

data, a complete taxonomy of quality problems should be used. In practice, beyond

the lack of a standard definition for the data quality concept, there is no standard

taxonomy of data quality issues; however, some classifications of the problems that

affect data quality have been proposed in literature.

In [Oliveira et al., 2005b,a] data quality problems are divided in single-source

and multi-source, then 26 and 9 primitive problems are respectively identified in

these two groups.

Also Rahm and Do [2000] distinguish between single-source and multi-source

data quality problems. Moreover, they divide the two groups into schema-related

and instance-related problems, defining schema-related problems as those that can

be addressed by improving the schema design, schema translation, and schema inte-

gration, and defining instance-related problems as errors and inconsistencies in the

actual data contents that cannot be prevented at the schema level.

Kim et al. [2003] present a detailed taxonomy of data quality issues consisting

of 33 primitive data quality problems. The taxonomy is based on the premise that

data quality problems manifest in three different ways: missing data; not missing,

but wrong data; and not missing and not wrong, but unusable data. Unusable

data can occur when two or more databases are merged or when codifications are

not consistently used. The taxonomy is a hierarchical decomposition of these three

basic manifestations of data quality issues.

Müller and Freytag [2003] roughly classify data quality issues into syntactical,

semantic and coverage anomalies. Syntactical anomalies describe characteristics

concerning the format and values used to represent entities (e.g., lexical errors and

domain format errors); semantic anomalies hinder the data collection from being a

comprehensive and non-redundant representation of the world (e.g., duplicates and

contradictions), and coverage anomalies decrease the amount of entities and entities

properties from the world that is represented in the data collection (e.g., missing

values). This classification is limited to data quality problems that occur in a single

relation of a single source.

Finally, a more general typology of data quality issues is proposed in [Fürber

and Hepp, 2005], where the quality problems are traced back to four basic types;

namely, inconsistency, lack of comprehensibility, heterogeneity, and redundancy.
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2.3 Approaches to Data Quality

Approaches to data quality can be divided in preventive, diagnostic, and corrective

approaches.

Being data cleaning an expensive process and not always applicable, preventing

the inclusion of dirty data in a repository is obviously an important step. Preventive

approaches refer, for example, to the appropriate design of databases, to the use of

integrity constraints, and to the development of data entry tools providing data

check functionalities.

Prevention, however, is not always sufficient to avoid all the possible quality

issues; thus, the discovery of incorrect data is an important task in the evaluation of

data quality, and it is the first necessary step in data cleaning. Common diagnostic

approaches are database profiling and exploratory data analysis.

Finally, data cleaning deals with detecting and removing errors and inconsisten-

cies from data. Currently used corrective approaches comprise cleaning methods for

attributes, duplicate detection techniques, and virtual repair methods.

For the variety of the techniques proposed to deal with low quality data, efforts

have been recently devoted also to the definition of methodologies that can help in

selecting, customizing, and applying data quality techniques.

The rest of the chapter briefly summarizes the approaches to data quality used

in existing software tools or that have been presented in literature.

2.3.1 Diagnostic approaches

Database profiling

Data profiling focuses on the analysis of individual attributes. It derives information

such as data type, length, value range, discrete values and their frequency, variance,

uniqueness, occurrence of null values, and typical string pattern, providing an exact

view of various quality characteristics of the attributes.

Exploratory data analysis

Exploratory Data Analysis (EDA), sometimes called Exploratory Data Mining [Dasu

and Johnson, 2003], refers to activities that enclose the statistical evaluation of

data values and the application of data mining algorithms in order to explore and

understand data.

Data mining can help discover specific data patterns (e.g., relationships holding

among several attributes) and rules to ensure that data do not violate the application
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domain constraints. This is the focus of so-called descriptive data mining models

including clustering, summarization, association discovery, and sequence discovery.

In many, if not in most cases, data can only be cleaned effectively with hu-

man involvement. EDA typically involves a human in the process of understanding

properties of a dataset, including the identification and possible correction of errors.

Therefore, there is typically an interaction between EDA methods and data visu-

alization systems: data visualization is often used to make statistical properties of

data (e.g., distributions, correlations, etc.) easily accessible to data analysts.

2.3.2 Corrective approaches

Cleaning methods for attributes

Data cleaning techniques for single attributes can be categorized by the data types

that they target.

In this field, the issue of cleaning quantitative data (i.e., integers or floating point

numbers) has been initially addressed. Statistical methods for outlier detection are

the foundation of data cleaning techniques in this domain; an exhaustive survey of

data cleaning methods used on quantitative attributes can be found in [Hellerstein,

2008].

Research efforts have been also devoted to categorical data, namely, names or

codes used to assign data into categories or groups. One key problem in data cleaning

for categorical data is the identification of synonyms. Another relevant issue is

managing data entry errors (e.g., misspellings) that often arise with textual codes;

currently, several techniques for handling misspellings, often adapted to specialized

domains, are available.

Recent works have proposed the use of Functional Dependencies (FDs) for data

cleaning purposes in relational databases. Data dependencies are normally used in

the context of database design; however, representing domain knowledge, they can

be useful also in the data quality field. For example, in [Pivert and Prade, 2010] the

case in which dirtiness corresponds to the violation of FDs is considered.

Furthermore, in order to perform more specific data cleaning operations, exten-

sions of FDs have been proposed. In particular, Conditional Functional Dependen-

cies (CFDs), which are FDs holding on a subset of the instances of the original

relation, have been recently proposed in [Cong et al., 2007] as a method for incon-

sistency detection and repairing. This approach is used, for example, in Semandaq

[Fan et al., 2008a], a tool using CFDs for data cleaning purposes, where users can

specify CFDs through the drag and drop functionality provided in the user inter-

face. Another tool, called Data Auditor, is presented in [Golab et al., 2010] and
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supports more types of constraints (i.e., CFDs, conditional inclusion dependencies,

and conditional sequential dependencies) that are used to test data inconsistency

and completeness.

Duplicate detection and record linkage

The aim of these techniques is to match all the records relating to the same entity.

Duplicate entries can be identical records or records referring to the same entity and

containing different values.

The process of matching records stored in different databases but referring to

the same entity is commonly called record linkage; other terms are also used, such

as merge/purge problem, object identification, and entity uncertainty. Sometime,

when applied on a single database, this process is called de-duplication.

Different techniques, such as knowledge-based methods, filtering, and regular

expression matching, have been proposed to address this issue; a survey of the most

used techniques can be found in [Elmagarmid et al., 2007].

Querying inconsistent data

An approach to manage data inconsistencies is based on the concepts of repair and

consistent query answer [Bertossi and Chomicki, 2003].

A repair of a database is another database – over the same schema – that is

consistent and differs minimally from the original database. Research has focused

on both materialized and virtual repairing, and different notions of repair have been

proposed to capture the concept of minimal change in different ways [Chomicki,

2006].

Virtual repairing, which is usually called consistent query answering, does not

change the database but rather returns query answers true in all repairs (i.e., consis-

tent query answers) regardless of the way the database is fixed to remove constraint

violations. Thus, consistent query answers can provide a conservative “lower bound”

on the information contained in the database. With this aim, various methods for

computing consistent query answers without explicitly computing all repairs have

been developed [Chomicki, 2006].

Data transformation methods

Data transformation methods are used to modify the schema and the instances of a

database, mainly with integration purposes.

In particular, the Extract-Transform-Load process for data warehouse creation

consists of steps that extract relevant data from the sources, transform them to the
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target format, clean it, and then load them into the data warehouse. A survey on

the technologies that can be used in the Extract-Transform-Load process can be

found in [Vassiliadis, 2009].

2.4 Data Quality assessment

As summarized in [Lee et al., 2006], the main techniques that are currently used to

assess the quality of a dataset are:

– The use of data quality surveys, which relies on users satisfaction as a mea-

sure of quality; a survey elicits the evaluation of data quality dimensions from

stakeholders of the organization providing the data and the resulting assess-

ment reflects the perceptions of the participants in the survey.

– The computation of data quality metrics or indicators, which can provide

objective measurements of some quality characteristics.

– The application of data integrity analysis, which focuses on the conformance

of data to integrity constraints specified in the database.

To assess the quality of data stored in a repository or produced by an organization,

different strategies employing combinations of these techniques can be adopted.

Several proposals of combined techniques in form of methodologies, mainly ad-

dressed to business companies and organizations providing services to clients, can

be found in literature and some of them will be mentioned in one of the following

paragraphs.

2.4.1 Metrics for Data Quality

Assessment of data quality can be performed in relation to several data quality

dimensions.

Data quality dimensions and their measurement are usually discussed indepen-

dently from each other. In each context, after having determined which data quality

dimensions are important or more useful, it is then necessary to define some variables

referring to the chosen dimensions.

The following are examples of general metrics suggested in [Lee et al., 2006]:

– For the accuracy dimension:

Free − of − error rating = 1 −
Number of data units in error

Total number of data units
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– For the completeness dimension:

Completeness rating = 1 −
Number of incomplete items

Total number of items

– For the consistency dimension:

Consistency rating = 1−

Number of instances violating specific consistency type

Total number of consistency checks performed

– For the believability dimension:

Believability = min(Believability of source, Believability based on age of data

Believability when compared to internal commonsense standard)

where each of the three used variables are rated on a scale from 0 to 1.

– For the timeliness dimension (reflecting the up-to-date data feature):

Timeliness rating =

{

max

[

1 −
Currency

Volatility
, 0

]}

s

where:

• currency = (delivery time - input time) + age;

• volatility refers to the length of time over which data remain valid;

• delivery time refers to the time at which data were delivered to the user;

• input time refers to the time at which data were received by the system;

• age refers to the age of data when were first received by the system;

• and the exponent value is task dependent (allowing one to control the

sensitivity of the measure).

Many of the variables that can be measured are context dependent, for this

reason, in order to be used in practice, the above proposed metrics need to be

customized in the specific context.

For example, the metric suggested for the accuracy dimension, which is the

most cited data quality characteristic, can be used only when wrong data are easily

identifiable, which is not often the case. Accuracy can be defined as how closely

information matches a real-life state; namely, the accuracy of an attribute value

measures the distance between the attribute value stored in a data repository and
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the corresponding value in the real world at the moment of measuring the quality of

the attribute value. Accuracy is thus determined by means of a distance measure;

to measure it exactly, it is necessary to know the attribute value as it is stored in

the data source and also its actual value. In many cases, determining the latter is

challenging; moreover, in some cases, it is not even possible (this is often the case for

data in scientific contexts). Therefore, it could be useful to derive information on

the quality of an attribute value without knowing its real-world counterpart. Görz

and Kaiser [2012], for example, investigate how metrics for completeness, validity,

and currency dimensions can be aggregated to derive an indicator for accuracy and

propose an indicator function for accuracy based on the algebraic product of the

measures for the completeness, validity, and currency dimensions.

2.5 Data Quality methodologies

A data quality methodology can be defined as a set of guidelines and techniques that,

starting from the description of an application context, defines a rational process to

assess and improve the quality of a dataset.

The Total Data Quality Management (TDQM) [Wang, 1998] was the first general

methodology published in the data quality literature. The fundamental objective

of this methodology is to extend the principles of Total Quality Management used

in the field of product manufacturing to the data quality context. The process

underlying the TDQM methodology considers four phases (iteratively executed, thus

constituting a cycle) as necessary for managing an information product:

1. The definition phase includes the identification of data quality dimensions and

related requirements.

2. The measurement phase produces quality metrics that provide feedback to

data quality management and allow for the comparison of the effective quality

with predefined quality requirements.

3. The analysis phase identifies the roots of quality problems and studies their

relationships.

4. The improvement phase devises quality improvement activities.

TDQM proposes also a graphical model for the description of the information

production processes, called IP-MAP [Shankaranarayan et al., 2000]. IP-MAP en-

ables the specification of business processes by means of a conceptual map in which

the activities corresponding to the data quality management process are properly

addressed.
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IP-MAP is the only language for information process modeling ever proposed

and represents a de facto standard. A comparison among IP-MAP and other graph-

ical modeling languages (e.g., workflow and data flow diagrams) can be found in

[Shankaranarayan and Wang, 2007]. An example of IP-MAP for the case study

was presented in the introduction of the present work; moreover, details about the

constructs of the language can be found in appendix C.

Afterwards, other methodologies have been proposed, such as AIMQ (A Method-

ology for Information Quality Assessment) [Lee et al., 2002], DQA (Data Quality

Assessment) [Pipino et al., 2002], and CDQ (Comprehensive methodology for Data

Quality management) [Batini and Scannapieco, 2006].

The sequence of activities composing a data quality methodology can be generally

grouped in three phases:

1. State reconstruction, which is aimed at collecting contextual information on

organizational processes and services, data collections and related management

procedures, quality issues and corresponding costs.

2. Assessment/measurement, which measures the quality of data collections along

relevant quality dimensions. The term measurement is used to address the

issue of measuring the value of a set of data quality dimensions, while the

term assessment is generally used when such measurements are compared with

reference values to enable a diagnosis of quality.

3. Improvement, which concerns the selection of steps, strategies, and techniques

in order to reach new data quality targets.

A detailed comparison of thirteen methodologies (comprised those previously

mentioned) can be found in [Batini et al., 2009], where the considered methodolo-

gies are compared along several perspectives, including the methodological steps,

the techniques, the data quality dimensions, the types of data, and the types of

information systems addressed by each methodology.

2.6 Data cleaning tools

Every software application that implements one or more techniques to approach one

or more data quality issues can be considered a data quality tool, including in the

group, for example, also data analysis and data profiling tools. However, only the

tools aiming at correcting data anomalies are generally considered to be cleaning

tools.
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Common functionalities provided by the available data cleaning tools are clean-

ing of categorical attributes, outlier identification, duplicate detection, and record

linkage. Some tools concentrate on a specific domain, such as cleaning name and

address data, or on a specific cleaning phase, such as duplicate detection. At the

contrary, Extract-Transform-Load (ETL) tools provide transformation and workflow

capabilities covering a large part of the data transformation and cleaning process

necessary in the construction of data warehouses.

Currently, there are several commercial tools available for data cleaning and

most of them are ETL tools. Industrial systems for ETL are provided both by the

major database vendors and by the individual ETL-targeted vendors. Popular tools

include Oracle Warehouse Builder, Informatica PowerCenter, IBM Datastage, and

Microsoft Integration Services.

In [Barateiro and Galhardas, 2005] a survey on data cleaning tools is presented,

with a detailed feature comparison on tools both of academic and industrial origin;

moreover, a survey on record linkage tools, both academic and commercial, can be

found in [Gu et al., 2003].

Some open source tools are also available. Among the open source tools we are

aware of, those that seem to have the most active communities are the following:

Febrl, which is mainly a record linkage tool, SQL Power DQguru, Flamingo Package,

and four ETL tools called Kettle, Talend Open Studio, CloverETL, and KETL.

Furthermore, data cleaning tools have also been developed by the research and

academic community. Some of them (FraQL, IntelliClean, AJAX, Potter’s Wheel,

SmartClean, Arktos, HumMer/FuSem and TAILOR) will be introduced in the fol-

lowing subsection along with the previously mentioned open source tools.

2.6.1 Tools from the research community

FraQL

FraQL [Sattler and Schallehn, 2001] is a declarative language supporting the spec-

ification of a data cleaning process. The language is an extension of SQL based on

an object-relational data model. It supports the specification of schema transforma-

tions as well as data transformations using user-defined functions. FraQL supports

also the filling in of missing values, the elimination of invalid tuples, and the removal

of outliers.

IntelliClean

IntelliClean [Lee et al., 2000] is a rule-based approach to data cleaning with the main

focus on duplicate elimination. The proposed framework comprises three steps. In
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the pre-processing stage syntactical errors are eliminated and the values are stan-

dardized in format. The processing stage represents the evaluation of cleaning rules

that specify actions to be taken under certain circumstances. There are four different

classes of rules: (1) duplicate identification rules specify the conditions under which

tuples are classified as duplicates; (2) merge/purge rules specify how duplicates are

to be handled; (3) update rules specify the way data is to be updated in a particular

situation and can also be used to specify how missing values ought to be filled in;

(4) alert rules specify conditions under which the user is notified about an event

occurrence or a constraint violation. During the first two steps of the data cleaning

process the actions taken are logged providing documentation of the performed op-

erations. In the human verification and validation step, these logs are investigated

to verify and possibly correct the performed actions.

AJAX

AJAX [Galhardas et al., 2000] major concern is transforming existing data from

one or more data collections into a target schema eliminating duplicates within the

process. For this purpose, a declarative language for expressing transformations to

be performed on tables is defined. AJAX provides five transformation operators:

mapping, view, matching, clustering, and merging. (1) Mapping is used to split

one table into several tables. (2) View corresponds to an SQL query augmented by

integrity constraints over its result; integrity constraints can generate exceptions that

correspond to specific events in the process. (3) Matching computes an approximate

join between two relations using, instead of the equality operator of SQL, a distance

function to decide which pairs of values need to be joined. (4) Clustering takes a

single input relation and returns a single output relation that groups the records of

the input relation into a set of clusters; clusters can be calculated on the basis of

the usual SQL group by operator or by means of a distance function. (5) Merging

partitions an input relation according to various grouping attributes and collapses

each partition into a single tuple using an arbitrary aggregation function.

Potter’s Wheel

Potter’s Wheel [Raman and Hellerstein, 2001] is an interactive data cleaning tool

that integrates data transformation and error detection using a spreadsheet-like

interface.

The tool provides the following operations, called transforms, to support common

schema transformations without explicit programming: value translations, applying

a function to every value in a column; one-to-one mappings, transforming individual
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rows; and many-to-many mappings of rows. The effects of the performed operations

are shown on tuples visible on the screen. The anomalies handled by this approach

are syntax errors and irregularities. Users can also specify the required transforma-

tion through examples, and the tool produces the function that best matches the

provided examples by using algorithms based on the identification of regular expres-

sions. In addition, the tool allows users to define custom domains and corresponding

algorithms to enforce domain constraints.

SmartClean

SmartClean [Oliveira et al., 2009] is a data cleaning tool in which both detection

and correction operations are specified through a declarative language inspired by

the SQL language. The user does not need to specify the execution order of data

cleaning operations, the sequence is automatically established by the tool. The tool

supports the manipulation of data quality problems at different levels of granularity

(i.e., tuple, relation, and multiple relations).

Arktos

Arktos [Vassiliadis et al., 2001] is a framework modeling and executing the ETL

process for data warehouse creation. In this tool, data cleaning is considered as an

integral part of the ETL process; for this reason a meta-model is specified allowing

the modeling of the complete ETL process. The single steps, which perform clean-

ing operations, within the process are called activities. Each activity is linked to

input and output relations, and the logic performed by an activity is declaratively

described by an SQL statement. Each statement is associated with a particular error

type and a policy that specifies the behavior (i.e., the action to be performed) in

case of error occurrence. Six types of errors can be specified: primary key violation,

uniqueness violation and reference violation are special cases of integrity constraint

violations; the error type null existence is concerned with missing values; the re-

maining error types are domain mismatch and format mismatch referring to lexical

and domain format errors.

HumMer/FuSem

Humboldt Merger (HumMer) [Bilke et al., 2005] and FuSem [Bleiholder et al., 2007]

(which is an extension of HumMer) allow ad hoc declarative fusion of data from

heterogeneous sources using an extension of the SQL syntax to support data fusion

operations. Guided by a query against multiple tables, HumMer proceeds in three
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automated steps. First, instance-based schema matching bridges schematic hetero-

geneity of the tables by aligning corresponding attributes. Next, duplicate detection

techniques find multiple representations of identical real-world objects. Finally, the

data fusion and conflict resolution step merges duplicates into a single and consistent

representation. HumMer provides a subset of SQL as a query language, which con-

sists of select-project-join queries, and allows sorting, grouping, and aggregation.

In addition, it supports the Fuse By statement [Bleiholder and Naumann, 2005]

allowing both the alignment of different relations and the identification of tuples

representing the same real-world object.

TAILOR

TAILOR [Elfeky et al., 2002] is a record matching toolbox that allows users to

apply different duplicate detection methods on a dataset. TAILOR provides four

main functionalities: searching method, comparison function, decision model and

measurement; the last one allows an estimation of the performance of the used

decision model.

2.6.2 Open source tools

Febrl

Febrl1 – Freely Extensible Biomedical Record Linkage – [Christen, 2008, 2009] is

an open source tool written in Python and licensed under the Australian National

University (ANU) Open Source License. Febrl was initially dedicated to data stan-

dardization and probabilistic record linkage in the biomedical domain. It includes

a probabilistic approach based on a hidden Markov model for data standardization

and seventh different methods for record linkage. Input data are read from files,

and a graphical user interface is provided.

SQL Power DQguru

SQL Power DQguru2 (formerly known as SQL Power MatchMaker) is a Java-based

open source tool providing transformation and matching functions that users can

use to define their own data matching criteria. The data conversion workflow can

be manipulated by arranging and connecting individual process steps through a

graphical user interface. Moreover, it performs duplicate verification and merging

of duplicate records.

1http://sourceforge.net/projects/febrl
2http://www.sqlpower.ca/dqguru
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SQL Power DQguru is distributed under the GNU General Public License (GPL)

and can be interfaced with several database systems (e.g., Oracle, MySQL, Post-

greSQL).

Flamingo Package

The Flamingo Project, carried out at the University of California Irvine, focuses

on how to deal with errors and inconsistencies in information systems and aims at

developing algorithms in order to make query answering and information retrieval

efficient in the presence of inconsistencies and errors.

The Flamingo package3 [Li, 2011], developed in the context of the Flamingo

Project, is an open source software supporting approximate string queries. It is

implemented in C++ and includes algorithms for approximate selection queries,

location-based approximate keyword search, selectivity estimation for approximate

selection queries, and approximate queries on mixed types.

Kettle

Kettle4 (or Pentaho Data Integration Community Edition) is an open source tool

written in Java for designing graphically ETL transformations and jobs, such as

reading, manipulating, and writing data to and from various data sources. It is

focusing primarily on connectivity and transformation, and it is easily extensible

via Java plug-ins. Kettle supports a number of different database systems as well

as a variety of flat files. It provides a set of predefined transformations, moreover

users can implement further ones in JavaScript.

Kettle started as an independent open source ETL project and was later acquired

by Pentaho to be included in the Pentaho Business Intelligence suite. It is released

under the GNU Lesser General Public License (LGPL).

Talend Open Studio

Talend Open Studio5 is an open source data integration platform distributed un-

der the GNU General Public License (GPL). It provides components for business

process modeling and implements the ETL process in a graphical modeling environ-

ment. Through the graphical user interface users can drag and drop data processing

components onto a process map. Once the design is completed, Talend Data Quality

generates an executable code in Java or Perl that can be deployed and executed on

3http://flamingo.ics.uci.edu/index.html
4http://kettle.pentaho.com
5http://www.talend.com/products/talend-open-studio
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data sources. Talend Open Studio contains a set of predefined transformations and

users can specify additional ones in Java or Perl.

Talend Open Studio is developed by Talend, but it is also included in the open

source Business Intelligence package from JasperSoft called JasperETL6.

CloverETL

CloverETL7 is a Java-based data transformation and integration platform.

The engine of CloverETL is an open source Java library and does not provide

the user interface component. It is released under the GNU Lesser General Public

License (LGPL) and can be embedded in any application, commercial ones as well.

CloverETL is distributed in several editions: community, OEM program and

commercials. The community edition (which is not open source) does not include

the full set of transformation components and includes a limited version of the

CloverETL Designer (i.e., the graphical user interface module).

KETL

KETL8, designed by Kinetic Networks, is an open source data integration platform

with a Java-based architecture and an XML-based configuration. It supports ex-

tracting and loading of relational, flat file, and XML data sources, via JDBC and

proprietary database APIs.

KETL and its features are released under a combination of the GNU Lesser

General Public License (LGPL) and the GNU General Public License (GPL).

6http://community.jaspersoft.com/project/jaspersoft-etl
7http://www.cloveretl.com/products/open-source
8http://www.ketl.org



CHAPTER 3

Data Quality Rules

As constraints and their enforcement play a key role in the maintenance of data

integrity into a database, rules and their verification can play a key role in the

evaluation and assessment of the consistency of a dataset: the consistency of a

dataset can be defined in terms of constraints, and inconsistencies in the dataset

itself can be detected as failures to comply with these constraints.

Classic integrity constraints are relevant for data quality and for data cleaning;

however, they do not capture all the data quality concerns. For this reason, new

forms of quality constraints, which can be considered an extension of usual semantic

integrity constraints in databases, are proposed and investigated.

Moreover, data quality rules can play a further role: they can help in verifying

the suitability of a dataset to be used for a certain purpose.

The rest of the chapter introduces different types of data constraints that can be

used to evaluate the quality of a dataset and briefly mentions existing approaches

to enforce data quality constraints.

3.1 Data Quality constraints

3.1.1 Data dependencies

Data dependencies, such as functional dependencies, are traditionally used for data-

base schema design, integrity constraints, and query optimization, with respect to

schema quality in databases [Elmasri and Navathe, 2000]. Recently, data depen-

dencies have been revisited from the data quality perspective and used, for exam-

ple, to capture data inconsistency, repair inconsistent data, and remove duplicates;

moreover, new types of functional dependencies have been proposed as data quality

constraints.



Data Quality Rules 27

Functional Dependencies

A Functional Dependency (FD) is a relationship between attributes of a database re-

lation stating that the value of some attributes are uniquely determined by the values

of some other attributes. More formally, given a relation schema R = {A1, . . . , An}

and a set of tuples r from dom(A1) × · · · × dom(An), where dom(A) represents the

domain of attribute A, a FD is a statement X → Y requiring that X functionally

determines Y , where X, Y ⊆ R. X is called the left-hand side or the determinant

of the dependency, and Y is called the right-hand side or the dependent. The de-

pendency is satisfied by a relation instance r if, for all pair of tuples t1, t2 ∈ r,

t1[X] = t2[X], then t1[Y ] = t2[Y ] (where t[X] denotes the projection of a tuple t ∈ r

to a subset X ⊆ R).

Equality-Generating Dependencies

Equality-Generating Dependencies (EGDs), namely, dependencies over interpreted

data, have been introduced in [Beeri and Vardi, 1984] as a generalization of FDs.

An EGD states that if some tuples fulfilling certain equalities exist in the data-

base, some values in these tuples must be equal. Formally, an EGD is a pair

〈(a1, a2), I〉, where a1 and a2 are values for some attribute A and I is a finite relation

such that a1, a2 ∈ I[A]. A relation J satisfies 〈(a1, a2), I〉 if h(a1) = h(a2) for any

valuation h such that h(I) ⊆ J ; if a1 = a2, then it is trivially satisfied by every

relation.

Constraint-Generating Dependencies

In [Baudinet et al., 1999] a generalization of equality-generating dependencies, where

equality requirements are replaced by arbitrary constraints on the data domain, have

been introduced. Given a relation r, a constraint-generating k-dependency over r

(with k ≥ 1) is a first-order formula of the form:

(∀t1) · · · (∀tk)[[r(t1) ∧ · · · ∧ r(tk) ∧ C[t1, . . . , tk]] ⇒ C ′[t1, . . . , tk]]

where C[t1, . . . , tk] and C ′[t1, . . . , tk] denote arbitrary constraint formulas relating

the values of various attributes in the tuples t1, . . . , tk. There are no restrictions

on these formulas; they can include all constructs of the constraint theory under

consideration, including constants and quantification on the constraint domain.

Constraint-generating 1-dependencies as well as constraint-generating 2-depen-

dencies are the most common. For example, constraint-generating 1-dependencies

can express a variety of arithmetic integrity constraints, while functional depen-
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dencies and conditional functional dependencies can be expressed in the form of

constraint-generating 2-dependencies.

Conditional Functional Dependencies

In [Bohannon et al., 2007, Fan et al., 2008b] a class of constraints called Conditional

Functional Dependencies (CFDs) has been proposed, and the application of this type

of constraints in the data cleaning field has been studied. CFDs aim at capturing

the consistency of data by incorporating bindings of semantically related values.

Given a relation schema R defined over a fixed set of attributes denoted by

attr(R) with dom(A) denoting the domain of each attribute A ∈ attr(R), a CFD ϕ

on R is defined as a pair (R : X → Y , Tp), where: (1) X and Y are sets of attributes

from attr(R); (2) R : X → Y is a standard FD, referred to as the FD embedded in

ϕ; (3) Tp is a tableau with attributes in X and Y (referred to as the pattern tableau

of ϕ), where, for each A in X or Y and each tuple t ∈ Tp, t[A] is either a constant ‘a’

in dom(A) or an unnamed variable denoted by ‘_’ that draws values from dom(A).

The pattern tableau Tp of ϕ refines the standard FD embedded in ϕ by enforcing

the binding of semantically related data values. X can be denoted as LHS(ϕ) and

Y as RHS(ϕ); moreover, the attributes in a pattern tuple are separated with ‘||’.

In [Fan et al., 2008b] a normal form for CFDs has been defined: a CFD ϕ is in

normal form if ϕ = (R : X → A, tp), where A is a single attribute and the pattern

tableau consists of a single pattern tuple tp only.

CFDs having only unnamed variables ‘_’ in their tableaux are classic FDs, while

CFDs with only constant values in their tableaux are called constant CFDs and can

be considered equivalent to association rules.

Constrained Functional Dependencies

Constrained functional dependencies have been proposed by [Maher, 1997]. They

extend the traditional notion of FDs by expressing that a FD holds on a subset of

a relation, where the subset is defined by a constraint.

These dependencies have been proposed to be used with logic programming

languages and to express constraints in databases. Although they are based on the

same idea on which CFDs are founded, they were not used in the data cleaning field.

CFD extensions

After the publication of the works about CFDs, extensions of CFDs have been

proposed to support disjunction and negation [Bravo et al., 2008], to specify patterns
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in terms of value ranges [Golab et al., 2008], and to specify patterns of data values

containing built-in predicates [Chen et al., 2009].

Extended Conditional Functional Dependencies

The Extended Conditional Functional Dependency (eCFD) has been proposed in

[Bravo et al., 2008]. In contrast to CFDs, eCFDs specify patterns of semantically

related values in terms of disjunction and inequality, and they can catch inconsis-

tencies that cannot be detected by CFDs.

Given a relation schema R defined over a fixed set of attributes denoted by

attr(R) with dom(A) denoting the domain of each attribute A ∈ attr(R), an eCFD

ϕ is a triple (R : X → Y , Yp, Tp), where (1) X, Y, Yp ⊆ attr(R), and Y ∩ Yp = ∅;

(2) X → Y is a standard FD, referred to as the embedded FD of ϕ; (3) Tp is a

pattern tableau consisting of a finite number of pattern tuples over the attributes in

X ∪ Y ∪ Yp such that, for any tuple tp ∈ Tp and for each attribute A in X ∪ Y ∪ Yp,

tp[A] is either an unnamed variable ‘_’, a set S, or a complement set S̄, where S is

a finite subset of dom(A). X is denoted by LHS(ϕ) and Y ∪ Yp by RHS(ϕ).

Range Tableaux

In [Golab et al., 2008] a range tableau Tr is defined as a tableau with all attributes

from X and Y , where, for each row tr ∈ Tr and each (ordered) attribute A ∈ X ∪Y ,

tp[A] = [a1, a2], with a1, a2 ∈ dom(A) and a1 ≤ a2. Ranges generalize both constants

and wildcards, as a constant ‘a’ can be written [a, a] and ‘_’ can be written [amin,

amax], where amin = min dom(A) and amax = max dom(A).

To denote that a tuple t ∈ dom(R) satisfies a particular row tp of tableau T , the

symbol ≍ is used. Given a tuple t ∈ dom(R) and a row tr ∈ Tr, t[S] ≍ tr[S] iff, for

each attribute A of S, t[A] ∈ tr[A]; namely, t matches the tableau row tr if t[A] is

an element of the range tr[A] for every attribute A.

A relation instance dom(R) satisfies a CFD ϕ = (R : X → Y , Tr) iff ∀ti, tj ∈

dom(R) and ∀tr ∈ Tr if ti[X] = tj [X] ≍ tr[X], then ti[Y ] = tj [Y ] ≍ tr[Y ].

CFDps

A type of data dependency called CFDp has been presented in [Chen et al., 2009].

CFDps are CFD with built-in predicates (6=, <, >, ≤, ≥) in the patterns of data

values. A CFDp ϕ on R is a pair R(X → Y , Tp), where: (1) X and Y are sets of

attributes in attr(R); (2) X → Y is a standard FD, referred to as the FD embedded

in ϕ; (3) Tp is a tableau with attributes in X and Y , referred to as the pattern

tableau of ϕ, where, for each A in X ∪ Y and each tuple tpi
∈ Tp, tpi

[A] is either an

unnamed variable ‘_’ that draws values from dom(A) or ‘op a’, where op is one of

6=, <, >, ≤, ≥, and ‘a’ is a constant in dom(A).
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Intuitively, each pattern tuple tpi
specifies a condition via tpi

[X], and the de-

pendency is satisfied if t[X] satisfies the conjunction of all these conditions. CFDps

are more powerful than CFDs but cannot express disjunctions as defined in [Bravo

et al., 2008].

Differential Dependencies

In a recent paper [Song and Chen, 2011], a new kind of dependency, called differential

dependency, has been proposed. Differential dependencies specify constraints on the

differences of the values of the attributes and can be used as a novel class of integrity

constraints.

Formally, given a relation r over a schema R, a differential dependency written in

the form φL[X] → φR[Y ], where φL[X] and φR[Y ] are differential functions specifying

constraints on distances over attribute sets X and Y of R. It states that, for any

two tuples from r, if their value differences – measured by certain distance metric

– on attributes in X agree the differential function φL[X] (i.e., distance constraints

on X), then their value differences on attributes in Y should also agree with the

differential function φR[Y ].

Order Dependencies

Order dependencies can capture a monotonicity property between two sets of values

projected onto some attributes in a relation: given a relation schema R(U), an

order dependency X → Y (with X, Y ⊆ U) holds if an order over the values of each

attribute in X implies an order over the values of each attributes of Y .

Order dependencies were introduced for the first time in the context of database

systems by [Ginsburg and Hull, 1983]. Later, Ordered Functional Dependencies

(OFDs) have been defined in the context of an extension of the relational data

model to incorporate ordered domains [Ng, 1999].

The semantics of OFDs has been defined by means of two orderings, point-

wise ordering and lexicographical ordering, and the corresponding OFDs have been

called respectively Pointwise Ordered Functional Dependencies (POFDs) and Lex-

icographical Ordered Functional Dependencies (LOFDs). According to a pointwise

ordering, the tuple x1, . . . , xn is less than another tuple y1, . . . , yn if xi ≤ yi for each

1 ≤ i ≤ n; while, according to a lexicographical ordering, the tuple x1, . . . , xn is less

than another tuple y1, . . . , yn if there is an index j ≥ i such that xj < yj and xi = yi

for each i < j.

Even if order dependencies have been proposed in the database context, we are

not aware of any application of these dependencies in the data cleaning field. In a
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recent work, however, order dependencies have been used in the query optimization

context [Szlichta et al., 2012].

3.1.2 Existence constraints

In a dataset the presence or absence of values for some attributes may be related to

the presence or absence of values for other attributes. In order to deal with this kind

of relations, two types of constraints, called existence constraints and disjunctive

existence constraints, were introduced in literature works related to databases with

incomplete information [Atzeni and Morfuni, 1986].

Considering that a tuple is said to be total on X (or X-total) if each attribute

A ∈ X is not null, an existence constraint is a statement e : X → Y (read X requires

Y ), where X and Y are sets of attributes, holding in a relation r over a scheme R(U)

(where U is a finite set of attributes and X ∪ Y ⊆ U) if each X-total tuple t ∈ r is

also Y -total. If Y = { }, then the existence constraint is assumed satisfied.

A disjunctive existence constraint is a statement d : X → S, where X is a set

of attributes and S = Y1, Y2, . . . , Yn is a set of sets of attributes; X → Y1, Y2, . . . , Yn

holds in a relation r over a scheme R(U) (with X, Y1, Y2, . . . , Yn ⊆ U) if, for each

X-total tuple t ∈ r, there is an i ∈ 1, 2, . . . , n such that t is Yi-total.

In the relational database design context, the term existence dependency has

been used as a synonym of participation constraint [Elmasri and Navathe, 2000], a

structural constraint indicating that the existence of an entity depends on its being

related to another entity. In a relational database, a participation constraint can be

implemented as a foreign key integrity constraint.

3.1.3 Association rules

Some literature works propose to use association rules extracted from a dataset as

a means to discover dirty data; for example, in [Hipp et al., 2001] a rule-based data

mining approach for outlier detection is described.

An association rule has the form X ⇒ Y , where X and Y are two sets of items;

X is called left-hand side and Y right-hand side.

The idea to look for association rules in a dataset was originally introduced in the

“basket” data analysis field, where purchased data were grouped by the purchase

transactions, and associations between two sets of bought items were found. In

general, the data mining process consists in discovering associations between two sets

of data found in the same group. As the number of associations might be huge, and

not all the discovered associations are meaningful, two probability measures – called

support and confidence – are introduced to discard the less frequent associations in a
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repository. The support is the joint probability to find X and Y in the same group;

the confidence is the conditional probability to find in a group Y having found X.

Two thresholds, respectively for support and confidence, are given in input to the

data mining process to discard the less frequent association rules.

3.2 Data constraint enforcement

Basic integrity constraints can be easily enforced in a relational database using

the features available in the SQL language. For example, domain constraints and

constraints based on foreign keys can be specified in the creation of relational tables.

In order to express more complex constraints, the specifications of the standard

SQL-92 include a predicate, called assertion, for the definition of schema-level con-

straints [Elmasri and Navathe, 2000]. The assertion predicate can express a condi-

tion over the schema that has to be always satisfied. However, the existing database

management systems do not implement the assertion predicate; this is probably due

to the performance problems inherent with the implementation of a predicate that

can be arbitrarily complex and that has to be executed at every change occurring

in the database.

3.2.1 Active databases

Using a different approach, complex constraints can be implemented in the active

databases through the functionalities they provide for the definition of active rules.

In active databases, it is possible to enforce several constraints by specifying

the type of event that may cause the constraints to be violated and evaluating

appropriate conditions that check if the constraints are violated by the event or

not. Also complex application constraints, sometimes called business rules, can be

enforced with this approach.

The common way in which active rules are implemented in active databases

is through triggers, which are statements automatically executed by the database

management system whenever a specified event occurs. Triggers are offered by

almost all the commercial database management systems and are commonly used

for data integrity maintenance.

3.2.2 Business rule management systems

A business rule management system [Bajec et al., 2000] is a software system used to

define, execute, and monitor the decision logic that is used by operational systems

within an organization. The decision logic is represented through business rules
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that are meant to capture knowledge of constraints in an organization. They reflect

the business policy of an enterprise; however, while a business policy is a general

statement or direction for an organization, a business rule defines or constrains some

aspects of a business, asserts business structures, and influences the behavior of an

enterprise.

This kind of systems can contribute in improving the quality of the data produced

by the business processes, even if data quality is not their main target.

Three basic types of business rules have been identified in literature [Taveter and

Wagner, 2001]: integrity rules (also called integrity constraints), derivation rules

(also called deduction rules or Horn clauses), and reaction rules (also called action

rules or event-condition-action rules). A fourth type, called deontic assignments,

has only been marginally discussed in a proposal of considering authorizations as

business rules.

From an information system perspective, integrity rules (the first cited type of

business rules) play the role of constraints on a database helping ensure that the

structure and content of the real world is incorporated into the database.

The classic approach to computational systems based on rules comes from works

on logic programming and deductive databases. The current commercial business

rule systems seek to apply aspects of rule technology to implement rule-based logic

into specific business processes.

In some systems, business rules are implemented with the SQL language and are

stored as part of the database definition, but most of the rule engines use their own

proprietary rule specification language. The main differences among these languages

lie in the types of rules they support and in the way rules are recorded.

The approach based on business rules is widely adopted by software vendors,

who provide business process modeling tools with the ability to explicitly define the

constraints on the processes. There are also open source initiatives, mostly based on

Java technologies, such as Jess Rule Engine, JBoss Drools, JRuleEngine, Hammurapi

Rules, and SweetRules.



CHAPTER 4

Evaluation of Data Quality Rules

In order to use data quality rules to evaluate the quality of a dataset, we addressed

two main targets: the expression of quality concerns and their evaluation against

concrete instances.

The solution applied to the case study consists, as a first step, in the enforcement

of basic constraints during the insertion of the data into the database and, as a second

step, when the whole dataset is available, in the verification of more complex data

quality rules through the software tool we developed.

The aim of the tool is to identify the tuples not satisfying the given rules using

a simple approach in the definition of the rules themselves and without requiring to

the final users any software development.

More formally, the error detection problem can be expressed in the following

way: considering a database schema R = (R1, . . . , Rn), where Ri is a relation schema

with i ∈ [1, n], and having in input a set S of data quality rules defined on R and

a database instance D = (I1, . . . , In) of R, the error detection problem consists in

finding the subset (I ′1, . . . , I
′
n) of D such that ∀i ∈ [1, n] I ′i ⊆ Ii and each tuple in I ′i

violates at least one data quality rule in S.

The developed tool, which is Java technology based, provides functionalities

to express data quality rules and to evaluate them against a dataset stored in a

relational database identifying the subsets of data that do not comply with the

defined rules.

In the tool, rules are expressed using the XML markup language [Harold and

Means, 2004]. The root of the XML document is called rules; under the root,

each rule is specified through a tag called rule_definition. The Document Type

Definition (DTD) and the XML Schema for the XML structure used to express the

rules are shown in appendix A.

In order to facilitate the input of the rules, predefined templates are available
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for each type of rule accepted by the tool; after a template has been completed with

the details of a rule, the correct XML code for that rule is automatically generated

by the tool.

The data to be checked are stored in a relational database; in particular, for

the case study we used PostgreSQL1. In the rules, it is necessary to specify the

tables containing the data; instead of tables, views can be used as well, allowing

more flexibility in the definition of data constraints. For each defined rule, the tool

identifies all the records that do not comply with the rule itself; then the identified

records are stored in views or tables inside the same database containing the dataset.

4.1 Types of rules

The developed tool manages rules of the following types:

Conditional Constraint rule To express constraints that can be written in the

form if-then among attributes of the same relation. Association rules, con-

stant CFDs, and constant CFDps can be expressed with this type of rule.

Functional Dependency rule To define FDs among attributes of the same rela-

tion. Non-constant CFDs and non-constant CFDps can also be specified with

this kind of rule.

Order Dependency rule To express order constraints among attributes belong-

ing to the same relation.

Differential Dependency rule To specify differential dependencies among nu-

merical attributes of the same relation.

Existence Constraint rule To define existence constraints among attributes be-

longing to the same or to different relations.

Check Constraint rule It consists of boolean conditions, which can contain arith-

metic operators, on single attributes or among attributes belonging to the same

or to different relations.

In the following, we detail the rule types managed by the tool showing the

corresponding XML syntax and providing examples of SQL statements that can be

used to identify the records that do not comply with the rules. In the SQL statements

shown in the following, XML tags are referred using XPath-like expressions and

considering only the piece of XML code used in each example.

1http://www.postgresql.org
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4.1.1 Conditional Constraint rules

This type of rule can be used to express a constraint that has to be valid if a given

condition is satisfied; namely, a constraint that can be written in the form if-then.

For example, association rules, constant CFDs, and constant CFDps (i.e., CFDs and

CFDps with constant patterns only [Fan et al., 2011]) can be expressed with this

kind of rule.

The following XML skeleton is used to express this type of rule:

<rule_definition type="conditional_rule">

<table_name></table_name>

<rule_cr>

<if></if>

<then></then>

</rule_cr>

</rule_definition>

The if and then components of the rule contain one or more conditions, which can

contain arithmetic operators, connected by means of boolean operators.

The XML structure used to express the conditions is detailed in the following

DTD fragment:

<!ELEMENT then (condition|conditions)>

<!ELEMENT when (condition|conditions)>

<!ELEMENT conditions ((condition|conditions)+, boolean_operator)>

<!ELEMENT condition (lside, comparison_operator, rside)>

<!ELEMENT lside (column|arithmetic_computation)>

<!ELEMENT rside (constant|column|arithmetic_computation)>

<!ELEMENT column (table_name?, column_name)>

<!ELEMENT arithmetic_computation ((constant|column|

arithmetic_computation)+, arithmetic_operator)>

The tag comparison_operator can contain one of the following comparison op-

erators: =, 6=, <, >, ≤, ≥; the tag boolean_operator can contain the boolean

operators AND and OR; finally, the tag arithmetic_operator can contain one of

the following arithmetic operators: +, -, *, /.

In the following, we provide an example of SQL statement that can be used to

find the records that do not comply with a conditional constraint rule:

SELECT /rule_definition/rule_cr//column_name

FROM /rule_definition/table_name
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WHERE /rule_definition/rule_cr/if

AND NOT /rule_definition/rule_cr/then

4.1.2 Functional Dependency rules

Functional dependencies among attributes of the same relation can be defined with

this type of rule, including CFDs and CFDps expressed in their normal form as

defined in [Fan et al., 2008b] (for the definition of normal form for CFDs refer to

chapter 3).

The XML skeleton to specify this kind of rule is the following:

<rule_definition type="functional_dependency">

<table_name></table_name>

<rule_fd>

<lhs>

<column_name></column_name> +

</lhs>

<rhs>

<column_name></column_name> +

</rhs>

<when></when> ?

</rule_fd>

</rule_definition>

The left-hand side and the right-hand side of the rule can contain one or more at-

tributes. In order to express CFDs and CFDps, it is possible to add conditions

connected by means of boolean operators; the conditions have the same XML struc-

ture used for the conditions in the conditional constraint rules, and they are collected

under the tag when.

The following SQL statement2 exemplifies the way in which the tuples that do

not satisfy a functional dependency rule can be identified:

WITH tmpView AS (

SELECT //lhs/column_name, COUNT (DISTINCT (//rhs/column_name))

FROM /rule_definition/table_name

WHERE //when

GROUP BY //lhs/column_name

HAVING COUNT (DISTINCT (//rhs/column_name))>1

2The SQL WITH clause implements the Common Table Expression (CTE) defined in the

SQL:1999 standard.
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)

SELECT DISTINCT tableName.//lhs/column_name, //rhs/column_name

FROM tmpView, //rule_definition/table_name As tableName

WHERE tmpView.//lhs/column_name = tableName.//lhs/column_name

AND //when

4.1.3 Order Dependency rules

Adopting the definition of order dependency provided in literature [Ginsburg and

Hull, 1983], we defined a rule type to express direct and inverse order constraints

among attributes belonging to the same relation.

More formally, given a relation schema R(U) and a relation instance r over R,

this type of rule can be used to define a dependency X → Y (X, Y ⊆ U) such that:

• X →� Y denotes a direct order dependency if, for every pair of tuples s and

t ∈ r, s[X] � t[X] implies s[Y ] � t[Y ], where s[X] � t[X] if s[A] ≤ t[A]

∀A ∈ X and s[Y ] � t[Y ] if s[B] ≤ t[B] ∀B ∈ Y .

• X →� Y denotes an inverse order dependency if, for every pair of tuples s

and t ∈ r, s[X] � t[X] implies s[Y ] � t[Y ], where s[X] � t[X] if s[A] ≤ t[A]

∀A ∈ X and s[Y ] � t[Y ] if s[B] ≥ t[B] ∀B ∈ Y .

Furthermore, we introduced the possibility to apply these dependencies on non-

overlapping subsets of tuples; given P ⊂ R:

• (X →�P
Y |P ) denotes a direct order dependency on a partition of r if, for

every pair of tuples s and t ∈ r, s[P ] = t[P ] and s[X] � t[X] imply s[Y ] � t[Y ],

where s[Y ] � t[Y ] if s[A] ≤ t[A] ∀A ∈ Y .

• (X →�P
Y |P ) denotes an inverse order dependency on a partition of r if, for

every pair of tuples s and t ∈ r, s[P ] = t[P ] and s[X] � t[X] imply s[Y ] � t[Y ],

where s[Y ] � t[Y ] if s[A] ≥ t[A] ∀A ∈ Y .

The following XML skeleton expresses direct and inverse order dependencies:

<rule_definition type="order_dependency">

<table_name></table_name>

<rule_od type="direct|inverse">

<lhs>

<column_name></column_name> +

</lhs>

<rhs>
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<column_name></column_name> +

</rhs>

<when></when> ?

<partition_on></partition_on> ?

</rule_od>

</rule_definition>

The scope of the rule can be limited to a subset of the relation instance through

conditions, which can be collected in the XML format under the tag when. In

addition, in order to express order dependencies on non-overlapping sets of tuples,

it is possible to specify these sets on the basis of attributes, which in XML are

expressed using the tag partition_on.

The following SQL statement identifies the records that do not satisfy a direct

order constraint rule and provides, for each selected record, the number of failed

comparisons with the other records:

WITH tmpView AS (

SELECT DISTINCT //lhs/column_name, //rhs/column_name,

//rule_od/partition_on/column_name AS partCol

FROM /rule_definition/table_name

WHERE //rule_od/when

)

SELECT tableName.//lhs/column_name,

tableName.//rhs/column_name, COUNT(*)

FROM tmpView, /rule_definition/table_name AS tableName

WHERE //rule_od/partition_on/column_name[j] =

tmpView.partCol[j] AND //rule_od/when

AND ((tableName./lhs/column_name[1] <=

tmpView.//lhs/column_name[1]

AND tableName./lhs/column_name[i] <=

tmpView.//lhs/column_name[i]

AND (NOT tableName.//rhs/column_name[1] <=

tmpView.//rhs/column_name[1]

OR NOT tableName.//rhs/column_name[k] <=

tmpView.//rhs/column_name[k]))

OR (tmpView.//lhs/column_name[1] <=

tableName./lhs/column_name[1]

AND tmpView.//lhs/column_name[i] <=

tableName./lhs/column_name[i]
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AND (NOT tmpView.//rhs/column_name[1] <=

tableName.//rhs/column_name[1]

OR NOT tmpView.//rhs/column_name[k] <=

tableName.//rhs/column_name[k])))

GROUP BY tableName.//lhs/column_name, tableName.//rhs/column_name

Furthermore, the following SQL statement can be used to find the records that do

not satisfy an inverse order constraint rule with, for each selected record, the number

of failed comparisons with the other records:

WITH tmpView AS (

SELECT DISTINCT //lhs/column_name, //rhs/column_name,

//rule_od/partition_on/column_name AS partCol

FROM /rule_definition/table_name

WHERE //rule_od/when

)

SELECT tableName.//lhs/column_name,

tableName.//rhs/column_name, COUNT(*)

FROM tmpView, /rule_definition/table_name AS tableName

WHERE //rule_od/partition_on/column_name[j] =

tmpView.partCol[j] AND //rule_od/when

AND ((tableName./lhs/column_name[1] <=

tmpView.//lhs/column_name[1]

AND tableName./lhs/column_name[i] <=

tmpView.//lhs/column_name[i]

AND (NOT tableName.//rhs/column_name[1] >=

tmpView.//rhs/column_name[1]

OR NOT tableName.//rhs/column_name[k] >=

tmpView.//rhs/column_name[k]))

OR (tmpView.//lhs/column_name[1] <=

tableName./lhs/column_name[1]

AND tmpView.//lhs/column_name[i] <=

tableName./lhs/column_name[i]

AND (NOT tmpView.//rhs/column_name[1] >=

tableName.//rhs/column_name[1]

OR NOT tmpView.//rhs/column_name[k] >=

tableName.//rhs/column_name[k])))

GROUP BY tableName.//lhs/column_name, tableName.//rhs/column_name
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4.1.4 Differential Dependency rules

This rule specifies differential dependencies [Song and Chen, 2011]; namely, depen-

dencies that can be used to specify constraints on distances over attributes of the

same relation.

In the developed tool, we limited the application of differential dependencies only

to numerical attributes, and we introduced the possibility to apply these dependen-

cies on non-overlapping sets of tuples.

The XML skeleton to express differential dependencies is the following:

<rule_definition type="distance_dependency">

<table_name></table_name>

<rule_dd>

<lhs_dd>

<distance_condition> +

<column_name></column_name>

<comparison_operator></comparison_operator>

<constant></constant>

</distance_condition>

</lhs_dd>

<rhs_dd>

<distance_condition> +

<column_name></column_name>

<comparison_operator></comparison_operator>

<constant></constant>

</rhs_dd>

<when></when> ?

<partition_on></partition_on> ?

</rule_dd>

</rule_definition>

The tag when can contain conditions and can be used to reduce the scope of the

rule to a subset of the relation instance. In addition, with the tag partition_on it

is possible to specify differential dependencies for non-overlapping sets of tuples on

the basis of the attributes specified in this tag.

The following SQL statement identifies the tuples that do not satisfy a differ-

ential dependency rule and provides, for each selected tuple, the number of failed

comparisons with the other tuples:

WITH tmpView AS (
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SELECT //lhs_dd//column_name, //rhs_dd//column_name

//partition_on/column_name AS partCol

FROM /rule_definition/table_name

AND //when

)

SELECT tableName.//lhs_dd//column_name,

tableName.//rhs_dd//column_name, COUNT(*)

FROM tmpView, /rule_definition/table_name AS tableName

WHERE //partition_on/column_name[j] = tmpView.partCol[j]

AND //when

AND

(abs(tableName.//lhs_dd/distance_condition[i]/column_name -

tmpView.//lhs_dd/distance_condition[i]/column_name)

//lhs_dd/distance_condition[i]/comparison_operator

//lhs_dd/distance_condition[i]/constant

AND (NOT

abs(tableName.//rhs_dd/distance_condition[1]/column_name -

tmpView.//rhs_dd/distance_condition[1]/column_name)

//rhs_dd/distance_condition[1]/comparison_operator

//rhs_dd/distance_condition[1]/constant

OR NOT

abs(tableName.//rhs_dd/distance_condition[k]/column_name -

tmpView.//rhs_dd/distance_condition[k]/column_name)

//rhs_dd/distance_condition[k]/comparison_operator

//rhs_dd/distance_condition[k]/constant))

GROUP BY tableName.//lhs/column_name, tableName.//rhs/column_name

4.1.5 Existence Constraint rules

Referring to the definition of existence constraints introduced in works related to

databases with incomplete information [Atzeni and Morfuni, 1986], we defined ex-

istence constraint rules among attributes belonging to the same or to different rela-

tions.

Two types of existence constraints, called existence constraints and disjunctive

existence constraints, have been defined in literature [Atzeni and Morfuni, 1986].

Unlike the definitions proposed in the cited work, the rule implemented in the tool

manages only attributes instead of sets of attributes in the left-hand side of disjunc-

tive existence constraints and in both sides of existence constraints.
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More formally, given a relation schema R(U) and a relation instance r over R,

this type of rule can express dependency-like existence constraints and disjunctive-

like existence constraints defined as:

• A dependency-like existence constraint A → B (read A requires B), where

A, B ∈ U , holds on r if, for each tuple t ∈ r, t[A] 6= null implies t[B] 6= null.

• A disjunctive-like existence constraint A → S, where S = {Y1, . . . , Yn} is a set

of sets of attributes (with Y1, . . . , Yn ⊆ U) and A ∈ U , holds on r if, for each

tuple t ∈ r, t[A] 6= null implies ∃ Y ∈ S such that ∀B ∈ Y t[B] 6= null.

In addition, this rule type allows the definition of existence constraints on single

attributes and bidirectional existence constraints between two attributes (i.e., if one

of the two attributes exists in the dataset, the second has to exist as well) contained

in the same table or in different tables.

The XML skeletons to express the four types of existence constraints managed

by the tool are shown in the following:

<rule_definition type="existence_constraint">

<table_name></table_name> +

<rule_ec type="ec_dep">

<lhs_ec>

<column></column>

</lhs_ec>

<rhs_ec>

<column></column>

</rhs_ec>

<when></when> ?

<join_on></join_on> ?

</rule_ec>

</rule_definition>

<rule_definition type="existence_constraint">

<table_name></table_name> +

<rule_ec type="ec_disj">

<lhs_ec>

<column></column>

</lhs_ec>

<rhs_ec>

<table_name></table_name> ?
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<disj_attr> +

<column_name></column_name> +

</disj_attr>

</rhs_ec>

<when></when> ?

<join_on></join_on> ?

</rule_ec>

</rule_definition>

<rule_definition type="existence_constraint">

<table_name></table_name> +

<rule_ec type="ec_bidir">

<column></column> +

<when></when> ?

<join_on></join_on> ?

</rule_ec>

</rule_definition>

<rule_definition type="existence_constraint">

<table_name></table_name>

<rule_ec type="ec_attr">

<column></column>

<when></when>

</rule_ec>

</rule_definition>

The scope of the rule can be limited to a subset of the relation instance through

conditions, which can be expressed in the XML format using the tag when. In

addition, when two tables are referred in the rule, it is required to specify the

criteria to be used to join them; in the XML format, joining criteria are labeled with

the tag join_on.

The following SQL statements can be used to identify the records that do

not comply with dependency-like, disjunctive-like, and bidirectional existence con-

straints when only one table is referred in the rule:

SELECT //rule_ec//column_name

FROM //rule_definition/table_name

WHERE //lhs_ec//column_name IS NOT NULL

AND //rhs_ec//column_name IS NULL

AND //rule_ec/when
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SELECT //rule_ec//column_name

FROM //rule_definition/table_name

WHERE //lhs_ec//column_name IS NOT NULL

AND (//rhs_ec/disj_attr[1]/column_name[1] IS NULL

OR //rhs_ec/disj_attr[1]/column_name[k] IS NULL)

AND (//rhs_ec/disj_attr[i]/column_name[1] IS NULL

OR //rhs_ec/disj_attr[i]/column_name[k] IS NULL)

AND //rule_ec/when

SELECT //rule_ec//column_name

FROM //rule_definition/table_name

WHERE (//rule_ec/column[1]/column_name IS NULL

AND //rule_ec/column[2]/column_name IS NOT NULL)

OR (//rule_ec/column[2]/column_name IS NULL

AND //rule_ec/column[1]/column_name IS NOT NULL)

AND //rule_ec/when

Furthermore, SQL statements that can be used to find the records that do not com-

ply with dependency-like, disjunctive-like, and bidirectional existence constraints

when the attributes used in the rule belong to different tables, are listed in the

following:

SELECT //rule_ec//column_name

FROM //lhs_ec//table_name

LEFT OUTER JOIN //rhs_ec//table_name

ON (//rule_ec/join_on)

WHERE //lhs_ec//column_name IS NOT NULL

AND //rhs_ec//column_name IS NULL

AND //rule_ec/when

SELECT //rule_ec//column_name

FROM //lhs_ec//table_name

LEFT OUTER JOIN //rhs_ec/table_name

ON (//rule_ec/join_on)

WHERE //lhs_ec//column_name IS NOT NULL

AND (//rhs_ec/disj_attr[1]/column_name[1] IS NULL

OR //rhs_ec/disj_attr[1]/column_name[k] IS NULL)

AND (//rhs_ec/disj_attr[i]/column_name[1] IS NULL

OR //rhs_ec/disj_attr[i]/column_name[k] IS NULL)

AND //rule_ec/when
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SELECT //rule_ec//column_name

FROM //rule_ec/column[1]/table_name

FULL OUTER JOIN //rule_ec/column[2]/table_name

ON (//rule_ec/join_on)

WHERE (//rule_ec/column[1]/column_name IS NULL

AND //rule_ec/column[2]/column_name IS NOT NULL)

OR (//rule_ec/column[2]/column_name IS NULL

AND //rule_ec/column[1]/column_name IS NOT NULL)

AND //rule_ec/when

Finally, an SQL statement to select the records that do not comply with existence

constraints defined on single attributes is:

SELECT //rule_ec//column_name

FROM //rule_definition/table_name

WHERE //rule_ec//column_name NOT NULL

AND //rule_ec/when

4.1.6 Check Constraint rules

A check constraint rule consists of boolean conditions, which can contain arithmetic

operators, on single attributes or among attributes belonging to the same or to

different relations.

The following XML skeleton is used to express this type of rule:

<rule_definition type="check_constraint">

<table_name></table_name> +

<rule_cc>

<check></check>

<join_on></join_on> ?

</rule_cc>

</rule_definition>

One or more conditions, connected by means of boolean operators, can be defined

under the tag check. Moreover, when more than one table is used, it is required to

specify the criteria to be applied to join the tables themselves; in the XML format,

joining criteria are labeled with the tag join_on.

An example of SQL statement that can be used to identify the records that do

not comply with the rule when the referred attributes belong to the same table, is

the following:



Evaluation of Data Quality Rules 47

SELECT /rule_definition/rule_cc/column_name

FROM /rule_definition/table_name

WHERE NOT /rule_definition/rule_cc/check

By contrast, the following SQL statement can be used when more than one table is

considered in the rule:

SELECT /rule_definition/rule_cc//column_name

FROM /rule_definition/join/column[1]/table_name

JOIN /rule_definition/join/column[2]/table_name

ON /rule_definition/join/column[1]/column_name =

/rule_definition/join/column[2]/column_name =

JOIN /rule_definition/join/column[k]/table_name

ON /rule_definition/join/column[1]/column_name =

/rule_definition/join/column[k]/column_name =

WHERE NOT /rule_definition/rule_cc/check

4.2 XML validation with Schematron

The validation of an XML document through XML Schema ensures that the XML

code conforms to the given schema in terms of elements and structure. It is possible

to define exactly which elements and attributes can appear in an XML document,

in which order they will appear, and which types of data they can contain. This

makes XML Schema a grammar-based schema language because it deals with the

structure of things, just as grammar deals with the structure of things in spoken

languages.

Often, however, structure is not enough, and there is the need to introduce and

check other types of constraints. For this purpose, in addition to XML Schema,

we used Schematron [van der Vlist, 2007], which is a structural based validation

language. Schematron uses a tree pattern based paradigm, rather than the regular

grammar paradigm used in DTD and XML Schema. Tree patterns, defined as

XPath expressions, are used to make assertions and provide reports about XML

documents. Through the exploitation of this paradigm, Schematron provides the

power to express constraints across elements and attributes and also among their

values.

The Schematron reference implementation is actually an XSLT transformation

which transforms a Schematron schema into an XSLT document that is then used

to validate an XML document. Several implemented versions of Schematron are

currently available; namely, Schematron 1.5, Schematron 1.6 and ISO Schematron
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(Schematron has been standardized by ISO/IEC to become part of ISO/IEC 19757

DSDL). In our work, we used the ISO version.

In the following, we list some of the main constraints defined to validate the

XML structure we used to specify the data quality rules, with the Schematron code

to express them:

– In order to check the correct association of the tag corresponding to the chosen

rule type (i.e., rule_cr, rule_fd, rule_od, rule_dd, rule_ec, rule_cc) with

the attribute type in the rule_definition tag (we report only the assertion

for the conditional constraint rule because the others have the same structure):

<iso:rule context="rule_definition">

<iso:assert test="(@type='conditional_rule' and rule_cr)

or @type!='conditional_rule'">

For a conditional rule the tag rule_cr is required

</iso:assert>

</iso:rule>

– In rules of type conditional rule, functional dependency, order dependency,

and differential dependency only one table name has to be provided:

<iso:rule context="rule_definition">

<iso:assert test="((@type='conditional_rule' or

@type='functional_dependency' or @type='order_dependency' or

@type='distance_dependency') and count(table_name) = 1) or

(@type!='conditional_rule'and @type!='functional_dependency'

and @type!='order_dependency'

and @type!='distance_dependency')"> For conditional rules,

functional dependencies, order dependencies and differential

dependencies only one table name is allowed

</iso:assert>

</iso:rule>

– In an existence constraint rule, it is possible to define one or two table names;

moreover, when two table names are present, they have to be distinct:

<iso:rule context="rule_definition">

<iso:assert test="(@type='existence_constraint'

and (count(table_name)=1 or count(table_name)=2))

or @type!='existence_constraint'"> In an existence constraint
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rule it is possible to define one or two table names

</iso:assert>

<iso:assert test="(@type='existence_constraint'

and count(table_name)=2

and count(table_name)=count(distinct-values(table_name)))

or @type!='existence_constraint'

or not(count(table_name)=2)"> Table names have to be distinct

</iso:assert>

</iso:rule>

– In an existence constraint rule, when the attribute type for the tag rule_ec is

equal to ec_attr, only one column has to be specified under the tag rule_ec:

<iso:rule context="rule_ec">

<iso:assert test="(@type='ec_attr' and count(./column)=1)

or (@type!='ec_attr')"> An existence constraint rule

on a single attribute requires only one column under

the tag rule_ec

</iso:assert>

</iso:rule>

– In an existence constraint rule, when the attribute type for the tag rule_ec

is equal to ec_bidir, two columns have to be present under the tag rule_ec:

<iso:rule context="rule_ec">

<iso:assert test="(@type='ec_bidir' and count(./column)=2)

or (@type!='ec_bidir')"> An existence constraint rule on

two attributes requires two columns under the tag rule_ec

</iso:assert>

</iso:rule>

– In an existence constraint rule, if some table names are specified under the tag

rule_ec, the same table names have to be present in the tag rule_definition:

<iso:rule context="rule_definition">

<iso:assert test="(@type='existence_constraint' and

count(./table_name) = count(rule_ec//table_name) and

count(distinct-values(rule_ec//table_name)) =
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count(distinct-values(.//table_name)) and

count(distinct-values(./table_name)) =

count(distinct-values(.//table_name)))

or (@type='existence_constraint' and

count(./table_name)=1 and count(rule_ec//table_name)=0)

or @type!='existence_constraint'"> Table names under rule_ec

have to be equals to table names under rule_definition

</iso:assert>

</iso:rule>

– In rules of type functional dependency, order dependency, and differential

dependency the column names have to be distinct (we report only the assertion

for the functional dependency rule because the others have the same structure):

<iso:rule context="rule_fd">

<iso:assert test="count(.//column_name) =

count(distinct-values(.//column_name))">

Column names have to be distinct

</iso:assert>

</iso:rule>

– The previous constraint applies also to an existence constraint rule when the

attribute type for the tag rule_ec is equal to ec_dep or ec_bidir:

<iso:rule context="rule_ec">

<iso:assert test="((@type='ec_dep' or @type='ec_bidir')

and count(.//column_name) =

count(distinct-values(.//column_name)))">

Column names have to be distinct

</iso:assert>

</iso:rule>

– If more than one table is used in a rule of type check constraint, the table

names have to be distinct:

<iso:rule context="rule_definition">

<iso:assert test="(@type='check_constraint'

and count(table_name)>1 and count(table_name) =

count(distinct-values(table_name)))



Evaluation of Data Quality Rules 51

or @type!='check_constraint' or count(table_name)=1">

Table names have to be distinct

</iso:assert>

</iso:rule>

– In a check constraint rule type, if some table names are specified under the tag

rule_cc, the same table names have to be present in the tag rule_definition:

<iso:rule context="rule_definition">

<iso:assert test="(@type='check_constraint' and

count(./table_name) = count(rule_cc//table_name) and

count(distinct-values(./table_name)) =

count(distinct-values(.//table_name)) and

count(distinct-values(rule_cc//table_name)) =

count(distinct-values(.//table_name)))

or (@type='check_constraint' and

count(./table_name)=1 and count(rule_cc//table_name)=0)

or @type!='check_constraint'"> Table names under rule_cc

have to be equals to table names under rule_definition

</iso:assert>

</iso:rule>

4.3 Data Quality measures

In the case study context, in order to quantify the quality of the data provided by

Member States, the main measure we introduced is closely connected with the data

quality rules. In fact, the used metric is based on the number of records in a dataset

satisfying the rules defined for the dataset itself.

Given a set of rules and called respectively:

• N the total number of rules

• Sr the number of records satisfying the rule r

• Ur the number of records not satisfying the rule r

IDQ =
N

∑

r=1

Ir

N
Ir = 1 −

Ur

Sr + Ur

The index IDQ will assume values in the range [0, 1], with 1 indicating that all

the data in the dataset satisfy all the defined rules.
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In order to take into account the relevance of the rules, a second version of this

type of metric considers also the weight concept.

Given a set of rules and called respectively:

• N the total number of rules

• wr the weight of the rule r

• Sr the number of records satisfying the rule r

• Ur the number of records not satisfying the rule r

IDQw
=

N
∑

r=1

−
Ir ∗ wr

N
Ir =

Ur

Sr + Ur

The values of the resulting index IDQw
will be 0 or a negative number, where 0

is the best value for the index.

Because of the types of rules used in the present work, these measures mainly

refer to the accuracy, consistency, and coverage data characteristics. In the case

study context, they were used to compare different datasets of different years or

subsets of the whole dataset (e.g., data by fleet segment or by Member State).

Other two indexes were used, referring respectively to the completeness of the

dataset and to the availability of data in relation to the data submission deadline.

The index referring to the completeness (or incompleteness) of the dataset is

computed as follows:

Icoverage =
NM
∑

k=1

−
1 ∗ wk

ND

where:

• NM is the total number of missing values

• ND is the total number of data values

• wk is the weight (i.e., relevance) for the missing attribute k

The index referring to the availability of data considers the deadline date for the

submission of data as the starting date for the life cycle of data and is computed in

the following way:

∀ k

{

if datek > datedeadline distancek = datek − datedeadline

otherwise distancek = 0

Iavailability = 1 −
ND
∑

k=1

distancek

ND

where ND is the total number of data values.



CHAPTER 5

Discovery of Data Quality Rules

In order to explore the case study datasets, we used the open source systems for

data mining called Weka (Waikato Environment for Knowledge Analysis) [Hall et al.,

2009] and RapidMiner [Mierswa et al., 2006], with particular reference to the fol-

lowing algorithms: Apriori, Tertius, JRip, NNge, and OneR.

Afterwards, to deepen the analysis of the used datasets and with the additional

purpose to investigate the dependencies that have been recently proposed in liter-

ature in the data cleaning field, we developed some algorithms for discovering the

dependencies used as quality rules in our tool.

This chapter, in particular, describes the algorithms implemented to discover

CFDs and CFDps in datasets.

5.1 Implemented algorithms

The algorithms were implemented using the Java programming language and the

PostgreSQL database; they were tested using some of the datasets provided by the

UCI Machine Learning Repository [Frank and Asuncion, 2010], such as Iris, Lenses,

Wisconsin breast cancer, Yeast, and Zoo datasets.

For this kind of algorithms, the worst case time complexity with respect to the

number of attributes is exponential because the number of minimal dependencies –

the type of dependencies the algorithms are looking for – can be exponential with

respect to the number of attributes.

In order to reduce the complexity, we used an input parameter setting the maxi-

mum number of attributes that the target dependencies have to contain. The intro-

duction of this restriction improves the algorithms efficiency for relations containing

many attributes.
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5.1.1 CFD discovery algorithm

As introduced in chapter 3, Conditional Functional Dependencies (CFDs) are Func-

tional Dependencies (FDs) holding on a subset of the tuples of the original relation

instance.

The definition of CFDs includes traditional FDs, which are CFDs characterized

by tableaux with unnamed variables only, and constant CFDs, which contain in

their tableaux only constant values. The most interesting CFDs are those between

these extremes, namely, the dependencies containing in their tableaux both constant

values and unnamed variables; we refer to them as variable or non-constant CFDs.

We are looking for this kind of CFDs and, in particular, for non-constant CFDs

containing at least one unnamed variable in both the sides of the dependencies –

left hand side (LHS) and right hand side (RHS) – and constant values only in the

LHS; namely, traditional FDs holding on a subset of the relation instance.

The original definition of CFDs [Fan et al., 2008b] (see chapter 3) was based

on the pattern tableau concept, so that CFDs are allowed to have multiple pattern

tuples. However, a tableau Tp for a CFD is equivalent to a set of CFD having a

single pattern tuple tp ∈ Tp [Fan et al., 2011]. For this equivalence, the implemented

algorithm is working with CFDs characterized by single pattern tuples; that is, the

CFD normal form defined in [Fan et al., 2008b] and already mentioned in chapter 3.

Furthermore, to simplify the discovery process, the algorithm manages only

CFDs with a single attribute in the RHS, without loss of generality because of

the Armstrong decomposition rule: if X → Y Z, then X → Y and X → Z.

More formally, the type of CFDs we are interested in can be written in the form

(LHS → RHS, tp), where:

• LHS → RHS is the FD embedded in the CFD;

• X, T ⊂ LHS, LHS = X ∪ T and X ∩ T = ∅;

• RHS contains a single attribute A;

• tp is a pattern tuple with attributes in LHS e RHS;

• ∀ B ∈ T tp[B] is a constant, ∀ Z ∈ X tp[Z]=‘_’, and tp[A]=‘_’.

In the following, we will refer to the attributes in T (for which constant values

are searched) as target attributes and to the constants in tp[T ] as target values.

Moreover, the embedded FDs that the algorithm looks for are minimal and non-

trivial dependencies.

Minimal non-trivial dependency. A dependency X → A is not trivial if A /∈ X;

moreover, it is minimal when A does not functionally depend on any proper subset of
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X, so that each attribute in X is necessary for the dependency to hold (i.e., X → A

is minimal if, ∀ Y ⊂ X, Y → A does not hold).

In addition, we are particularly interested in the discovery of dependencies ac-

tively satisfied (versus vacuously satisfied) because they are more meaningful in the

data quality context. The definition of FDs actively satisfied by a relation can be

found in [Mannila and Raiha, 1985].

Actively satisfied functional dependency. Given a relation instance r and a

functional dependency X → Y , if there exist distinct tuples t1 and t2 in r such that

t1[X] = t2[X] and if t1[Y ] = t2[Y ] ∀ t1, t2, then the relation r is said to satisfy the

functional dependency actively ; otherwise, if t1[X] 6= t2[X] ∀ distinct t1, t2, then the

relation r is said to satisfy the functional dependency vacuously.

It is evident that a FD actively satisfied gives more useful information when it

is used to evaluate the quality of a dataset.

A last requirement refers to the definition of minimality extended to pattern

tuples as defined in [Fan et al., 2011].

Pattern tuple minimality. A pattern tuple tp is minimal, or most general, if none

of the constants in the pattern tuple can be “upgraded” to ‘_’.

Summarizing, we are looking for: minimal non-trivial CFDs with the RHS con-

taining a single attribute and with actively satisfied embedded FDs; or, in other

words, minimal, non-trivial, actively satisfied FDs with the RHS containing a single

attribute, holding on the largest subsets of the relation instance.

The basic steps performed by the algorithm are:

– Building the candidates for FDs and CFDs;

– Pruning the number of candidates, when applicable;

– Testing the generated candidates on the relation instance.

A modified version of the algorithm allows the discovery of only frequent CFDs,

frequent CFDs being a subset of all the existing CFDs.

k-frequent CFD. As defined in [Fan et al., 2011], a CFD is said to be k-frequent

in a relation r if the support (i.e., the tuples that match the pattern of the CFD) of

the dependency is equal or greater than k, with k ≥ 1.

Candidate generation

Given a FD of the form LHS → Y with the attribute Y having all distinct values in

the relation instance, then or the FD is only vacuously satisfied (i.e., LHS assumes

distinct values for all the tuples) or the FD is not satisfied (i.e., LHS does not have
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all distinct values). For this reason, attributes with distinct values in all the tuples

can be ignored when building the RHS of a FD candidate.

To build the candidates for FDs, for each attribute A, which does not have only

constant values or distinct values in all the tuples, the algorithm generates all the

dependencies of the form LHS → A, where LHS ⊆ R − A, the minimum size of

LHS is 1, and the maximum size of LHS depends on the input parameter. When

the size of LHS is equal to 1, the candidate cannot generate any CFDs in the

form we are interested in; however, the algorithm uses the candidate to verify the

corresponding FD for pruning purposes (as explained later).

To build the LHS of the candidates, the algorithm starts from each single at-

tribute B ⊆ R − A (that does not have only constant values or distinct values in

all the tuples), proceeding afterwards in generating larger LHS containing all the

combinations of two, three, etc. attributes till the requested maximum number.

The generation of the combinations of LHS containing more than two attributes is

based on the prefix block approach [Huhtala et al., 1999]: two sets belong to the

same prefix block if they have a common prefix of length l − 1 (i.e., they differ only

for one attribute).

To determine the set of target attributes T , the algorithm excludes the attributes

that have only constant values or distinct values in all the tuples. Moreover, the

values used as constants to be assigned to the target attributes are those that have

more than one occurrence in the tuples.

Candidate pruning

The approaches implemented in the algorithm to prune the number of candidates

to be tested are based on the following criteria:

– When a FD LHS → RHS holds, it is not necessary to search for any CFDs

(LHS → RHS, tp) having embedded the holding FD.

– If Ai . . . Aj → Ak, is already verified to be a valid FD, it is not necessary to

check the candidate Ai . . . AjAj+1 → Ak because it is already known to be a

valid FD. This can be demonstrated using the Armstrong axiom of augmen-

tation and the decomposition rule: if X → Y , then XZ → Y Z, and then

XZ → Y and XZ → Z.

– If a CFD (XT → RHS, tp) holds, it is not necessary to check the candidates

(X2T2 → RHS2, tp2
), where RHS2 = RHS, X ⊆ X2, T ⊆ T2 and ∀ B ∈ T

tp[B] = tp2
[B].
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The algorithm pseudocode

The pseudocode of the algorithm developed to discover CFDs is shown in the fol-

lowing.

Input: relation r over schema R, maxLHS (maximum number of attributes in LHS)

SetFD := ∅

SetCFD := ∅

R1 := preliminaryPruning(R)

for each Ak ∈ R1 do

RHS := Ak

R2 := R1 - Ak

l := 1

L1 := {{A}|A ∈ R2}

testFDCandidatesAndPrune(L1, RHS)

while l < maxLHS do

Ll+1 := generateCandidates(Ll)

testCandidatesAndPrune(Ll+1, RHS)

l := l + 1

procedure generateCandidates(Ll)

Ll+1 := ∅

for each K ∈ prefixBlock(Ll) do

for each (Y, Z) ⊆ K, Y 6= Z do

if ∀A ∈ X, X\{A} ∈ Ll then

Ll+1 := Ll+1 ∪ {X}

return Ll+1

procedure testCandidatesAndPrune(Ll, RHS)

for each LHS ∈ Ll do

if testFDCandidate(LHS, RHS) then

SetFD := SetFD ∪ FD(LHS, RHS)

Ll := Ll − LHS

else

tl := 1

TL1 := {{A}|A ∈ LHS}

while tl <= (size(LHS) − 1) do

testCFDCandidatesAndPrune(TLtl, LHS, RHS)

TLtl+1 := generateCFDCandidates(TLtl)

tl := tl + 1
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procedure testCFDCandidatesAndPrune(TLtl, LHS, RHS)

for each A ∈ TLtl do

T := A

X := LHS − T

for each V ∈ dom(T ) do

tp[T ] := V

if not pruneCFDCandidate(T, X, RHS, tp[T ]) then

if testCFDCandidate(T, X, RHS, tp[T ]) then

SetCFD := SetCFD ∪ CFD(T, X, RHS, tp[T ])

procedure generateCFDCandidates(TLtl)

TLtl+1 := ∅

for each K ∈ prefixBlock(TLtl) do

for each (Y, Z) ⊆ K, Y 6= Z do

if ∀ A ∈ X, X\{A} ∈ TLtl then

TLtl+1 := TLtl+1 ∪ {X}

return TLtl+1

procedure pruneCFDCandidate(T, X, RHS, tp[T ])

if ∃ (X1T1 → RHS1, tp1
) ∈ SetCFD

and RHS1 = RHS and T1 ⊆ T and X1 ⊆ X

and ∀ B ∈ T1 tp1
[B] = tp[B]

return true

else

return false

procedure testFDCandidatesAndPrune(Ll, RHS)

for each LHS ∈ Ll do

if testFDCandidate(LHS, RHS) then

SetFD := SetFD ∪ FD(LHS, RHS)

Ll := Ll − LHS

procedure preliminaryPruning(R)

R1 := ∅

for each Ai ∈ R do

distinctV alues := number of distinct a ∈ Ai

totalV alues := size(Ai)

if (distinctV alues > 1 and distinctV alues < totalV alues) then

R1 := R1 ∪ Ai

return R1
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5.1.2 CFDp discovery algorithm

Among the dependencies recently proposed in literature (already mentioned in chap-

ter 3), the CFDps introduced in [Chen et al., 2009] seem to be particularly useful,

both for data quality assessment and for data cleaning purposes. In spite of this, for

the discovery of this type of dependency we have not found any algorithms published

in literature.

Searching for CFDps, we consider only numerical attributes and as comparison

operators those considered in [Chen et al., 2009] (i.e., 6=, <, >, ≤, ≥).

The algorithm is characterized by the same general structure already described

for the CFDs discovery algorithm. In order to determine the candidates for the

dependencies, the same steps are executed; the two algorithms differentiate, after

the selection of a candidate, in the way the conditions for the target attributes

are determined. After the general candidate XT → RHS for a CFDp has been

generated, the algorithm performs the following steps:

1. For the attributes in the set X and in RHS, (i.e., all the attributes not in the

target set T ), it produces the sets containing only tuples with identical values;

2. It generates partitions of the computed sets: each partition contains only sets

having different values for the attributes in the set X, thus assuring that all

the tuples in each partition satisfy the embedded FD;

3. For each partition, it iterates on the following steps (the number of iterations

depends on the number of partitions, but it can be limited by the user through

an input parameter):

(a) It merges the sets contained in the partition;

(b) It finds a range containing all the values for each attribute in the set T

(using the min and max values);

(c) From the range of values for the target attributes in the set T , it deletes

the values corresponding to the records contained in the sets that were

not used in the merging step;

(d) It examines the resulting set of values for the target attributes in the set

T and decides if the result has to be kept or refused.

We experimented also with the development of an algorithm for discovering

CFDps containing only the inequality operator (i.e., 6=). In this case, the used

approach is based on the discovery of dependencies that do not hold; then, these

values are used as negative conditions if the set of values for the target attributes is

small (the maximum size of this set can be assigned through an input parameter).
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5.2 Related works

The discovery of dependencies has attracted many research interests from the com-

munities of database design, machine learning, and knowledge discovery since early

1980s.

Two typical types of dependencies are often involved in the discovery: FDs and

inclusion dependencies. FDs represent value consistencies between two sets of at-

tributes; in contrast, inclusion dependencies represents value reference relationships

between two sets of attributes. Moreover, some algorithms for discovering CFDs

have been recently proposed in literature.

A recent work [Liu et al., 2012] reviews the methods proposed in literature to

discover FDs, approximate FDs, CFDs, and inclusion dependencies in relational

databases.

5.2.1 FD discovery methods

The methods proposed in literature to discover FDs from data can be classified as

top-down and bottom-up [Liu et al., 2012].

The top-down methods start with generating candidates for FDs level-by-level,

from short LHS to long LHS; then they verify if the candidates are valid dependencies

on the relation instance. The bottom-up methods, on the other hand, start with

comparing tuples to get agree sets or difference sets; then they generate candidates

for FDs and check them against the agree sets or difference sets for satisfaction.

The main difference between the two types of methods is that the first one checks

the candidates against the relation instance for satisfaction, while the second one

checks the candidates against the computed agree sets or difference sets.

Examples of well-known algorithms implementing a top-down method are TANE

[Huhtala et al., 1999] and FD_Mine [Yao et al., 2002, Yao and Hamilton, 2008],

while Fast-FD [Wyss et al., 2001] and Dep-miner [Lopes et al., 2000] are algorithms

adopting a bottom-up method.

On the basis of these definitions, the algorithms we developed to discover CFDs

and CFDps can be classified as top-down methods.

5.2.2 CFD discovery algorithms

For the discovery of general CFDs the following algorithms have been proposed:

– Chiang and Miller [2008] present an algorithm based on the attribute lattice

search strategy for discovering both constant and non-constant CFDs.
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– Fast-CFD [Fan et al., 2011] is inspired by the Fast-FD algorithm.

– CTANE [Fan et al., 2011] extends the TANE algorithm.

– CFD-Mine [Aqel et al., 2012] is also based on an extension of the TANE algo-

rithm.

Moreover, two algorithms for the discovery of only constant CFDs have been

recently proposed:

– CFDMiner [Fan et al., 2011] is based on techniques for mining closed item sets

and finds a canonical cover of k-frequent minimal constant CFDs.

– In [Li et al., 2012] new criteria to further prune the search space used by

CFDMiner to discover the minimal set of CFDs are proposed.

For the discovery of CFDps, to date and to our knowledge, there are no published

algorithms.



CHAPTER 6

Data Provenance

In many scientific fields (e.g., biology, chemistry, physics) large amounts of data are

collected and stored in various data repositories.

Data stored in curated databases1 are considered trustworthy because they are

under centralized control; however, data stored in curated repositories are normally

collected from different sources. Because information sources, or different parts of a

single large source, may vary widely in terms of quality, researchers can be interested

in having information about both data sources and transformations applied to data.

On the other hand, on the World Wide Web data are often made available with

no centralized control over their integrity. In this case, providing provenance and

other context information can help end users in judging if data are reliable.

In general, the term data provenance refers to the process of tracing and recording

the origins of data. The provenance of a data item generally includes information

about the source data items and the processes that lead to its creation and current

representation [Glavic and Dittrich, 2007].

Provenance in terms of origin and history of the changes of a dataset enables

its users to evaluate its suitability for a particular application; thus, provenance

information can play an important role in the data quality context.

Provenance has been extensively studied in the context of relational databases

[Tan, 2007] and for workflow management systems [Davidson et al., 2007].

In relational databases, provenance describes relationships between data in the

source and in the output by propagating fine-grained annotations or algebraic ex-

pressions from the input to the output. Different models of provenance for database

queries have been proposed; however, the main notions of database provenance are

1The term curated database is normally used for databases populated and updated by domain

experts through the consultation, verification, and aggregation of existing sources [Buneman et al.,

2008].
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called why provenance, how provenance, and where provenance. They describe the

relationships between data in the source and in the output by showing why an out-

put record was produced, or describing in detail how an output record was produced,

or showing data sources from where output data came. A survey about these three

main notions of database provenance can be found in [Cheney et al., 2007].

Provenance support has been recognized as an important added value in scientific

workflow systems. For this reason, provenance models have been developed for

several workflow management systems, such as Chimera [Foster et al., 2002], Karma

[Simmhan et al., 2008], Kepler [Anand et al., 2009], Taverna [Missier et al., 2008],

and ZOOM [Biton et al., 2008]. Data provenance in workflows is generally captured

as a set of dependencies between data objects; however, the amount of information

recorded for provenance varies among the systems.

The target of most of the researches in the data provenance field has been the

implementation of concrete systems in the context of either specific domains or tech-

nologies. Recently, however, the Open Provenance Model [Moreau et al., 2011] has

been proposed as an exchange format for representing provenance graphs indepen-

dently from the used technology or domain.

6.1 The Open Provenance Model

Existing provenance systems do not share a common data model for provenance.

To promote and facilitate interoperability among heterogeneous provenance systems

the Open Provenance Model (OPM) [Moreau et al., 2007] was proposed in 2007;

since then, it influenced the activities of the data provenance community.

OPM was designed to allow provenance information to be exchanged between

different and heterogeneous systems by means of a compatibility layer based on a

shared provenance model. Moreover, OPM defines a core set of rules which can be

used to identify the valid inferences that can be made on provenance representation.

Provenance of objects is represented by an annotated graph, which is a directed

acyclic graph expressing casual dependencies among entities enriched with annota-

tions capturing further information pertaining to execution.

The graph is based on three kinds of nodes called artifact, process, and agent:

– An artifact is an immutable piece of state which may have a physical embod-

iment in a physical object or a digital representation in a computer system.

– A process is an action (or series of actions) performed on or caused by artifacts

and resulting in new artifacts.
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– An agent is an entity acting as a catalyst of a process, enabling, facilitating,

controlling, or affecting its execution.

OPM aims at capturing the causal dependencies among artifacts, processes, and

agents. A causal relationship is represented by an arc that denotes the presence of

a causal dependency between the source of the arc (the effect) and the destination

of the arc (the cause).

The following five causal relationships are recognized in OPM:

1. A process used an artifact: a “used” edge from a process to an artifact is

a causal relationship indicating that the process required the availability of

the artifact to be able to complete its execution. When several artifacts are

connected to a same process by “used” edges, all of them were required for the

process to complete.

2. An artifact was generated by a process: a “was generated by” edge from an

artifact to a process is a causal relationship meaning that the process was

required to initiate its execution before the artifact can be generated. When

several artifacts are connected to a same process by multiple “was generated

by” edges, the process had to have begun, for all of them to be generated.

3. A process was triggered by (or informed by) another process: a “was triggered

by” edge from the process P2 to the process P1 is a causal dependency indicat-

ing that the start of the process P1 was required for P2 to be able to complete.

The relationship P2 “was triggered by” P1 only expresses a necessary condition

(not a sufficient one).

4. An artifact was derived from another artifact: a “was derived from” edge from

the artifact A2 to the artifact A1 is a causal relationship meaning that the

artifact A1 needs to have been generated for A2 to be generated.

5. A process controlled by an agent: a “was controlled by” edge from a process

P to an agent Ag is a causal dependency that indicates that the start and the

end of the process P was controlled by the agent Ag.

In the graphical notation for provenance graphs, artifacts are represented by

ellipses, processes are represented by rectangles, and agents are represented by oc-

tagons (figure 6.1); moreover, in the graphs, sources are effects and destinations are

causes.

In OPM the concept of role designates the function of an artifact or agent in a

process. Roles are constituents of “used”, “was generated by”, and “was controlled
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by” edges; their aim is to distinguish the nature of the dependency when multiple

such edges are connected to a same process:

– An artifact may be used by more than one process, possibly for different pur-

poses, and a process may use or generate more than one artifact; each “used”

and “was generated by” relation may be distinguished by a role with respect

to that process.

– An agent may control more than one process; in this case, the processes may

be distinguished by the role associated with the “was controlled by” relation.

– A process may be controlled by more than one agent; in this case, each agent

may have a distinct controlling function, which would be distinguished by roles

associated with the “was controlled by” relations.

Process

used(role)

Artifact

wasGeneratedBy(role)

wasDerivedFrom
wasTriggeredBy

Agent

wasControlledBy(role)

Figure 6.1: Basic concepts and relationships defined in OPM

Therefore, a provenance graph is defined as a directed graph, whose nodes are

artifacts, processes, and agents, and whose edges belong to one of the following

categories: used(role), wasGeneratedBy(role), wasTriggeredBy (or wasInformedBy),

wasDerivedFrom, and wasControlledBy(role).

Causality is not the only relationship among provenance entities, it is useful to

record other relevant domain-specific relationships; in OPM this can be done using

annotations. Thus, by means of annotations, edges can be further subtyped from

the five defined categories.

Provenance information about an artifact could be expressed at different levels

of abstraction or from different viewpoints. The OPM specification introduces the

concept of account to represent a description at some level of detail as provided by

one or more observers.
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Completion rules

The causal dependencies wasTriggeredBy and wasDerivedFrom are summary edges

for a process view, where an intermediary artifact is unknown, and a data view,

where an intermediary process is unknown, respectively. In [Moreau et al., 2011]

completion rules for these causal dependencies were introduced.

used(role2)wasGeneratedBy(role1)

wasTriggeredBy

Artifact
Process2Process1

Process1 Process2

Figure 6.2: Artifact introduction and elimination

The wasTriggeredBy edge in OPM can be inferred from the existence of a was-

GeneratedBy edge and a used edge. If one process generated an artifact that was

used by another process, then the latter “was triggered by” the former (figure 6.2).

wasDerivedFrom

Artifact2Artifact1

used(role1)
wasGeneratedBy(role2)

Artifact2Artifact1
Process

Figure 6.3: Process introduction

In a similar way, a wasDerivedFrom edge hides the presence of an intermediary

process (figure 6.3). However, the converse rule does not hold because, without any
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internal knowledge of the process, it is impossible to infer if there is or not an actual

dependency between the used artifact and the one that was generated. The fact

that a process used an artifact and generated another does not imply that the latter

was derived from the former; therefore, such a relationship needs to be asserted

explicitly.

Multi-step inferences

With the purpose of expressing queries or inferences about provenance graphs, in

[Moreau et al., 2011] other four relationships, which are multi-step versions of exist-

ing OPM relationships, were added to the model.

The first one is called multi-step wasDerivedFrom and indicates that the artifact

A1 was derived from the artifact A2 (possibly using multiple steps), written as

A1→*A2, if A1 “was derived from” an artifact that was A2 or that was itself derived

from A2 (possibly using multiple steps). In other words, it is the transitive closure

of the edge wasDerivedFrom, and it expresses that artifact A1 had an influence on

artifact A2.

The other relationships are denominated secondary multi-step edges:

1. Process P “used” artifact A (possibly using multiple steps), written P→*A, if

P used an artifact that was A or was derived from A (possibly using multiple

steps).

2. Artifact A “was generated by” process P (possibly using multiple steps), writ-

ten A→*P, if A was generated by P or was derived from an artifact (possibly

using multiple steps) that was generated by P.

3. Process P2 “was triggered by” process P1 (possibly using multiple steps),

written P2→*P1, if P2 used an artifact that was generated by P1 or that was

derived from another artifact (possibly using multiple steps) generated by P1.

Temporal constraints

In OPM graphs, edges can optionally be annotated with time information.

For the used and wasGeneratedBy edges, the timestamp indicates that the as-

sociated artifact was known to be generated or used at a given time; for the was-

DerivedFrom edge, the timestamp indicates when the source artifact was used; for

the wasTriggeredBy edge, the timestamp marks the time when the communicated

artifact was used by the edge source; finally, for the wasControlledBy edge, two

optional timestamps are allowed marking when the process was known to be started

or terminated, respectively.
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When time is expressed in an OPM graph, there are some time constraints to

be considered. In particular, the following “happened before” relationships, which

are displayed in figure 6.4, must be satisfied:

– an artifact must exist before it is being used (T1 ≤ T3 and T4 ≤ T6);

– if an artifact is used by a process, it will actually be used after the start of the

process (T2 ≤ T3) and before the end of the process (T3 ≤ T5);

– a process generates artifacts before its end (T4 ≤ T5), and a process start

precedes its generation of artifacts (T2 ≤ T4) and its end (T2 ≤ T5).

Process

used(role)

wasGeneratedBy(role)

Agent

wasControlledBy(role)

wasGeneratedBy(role)

used(role)
T1

T6
T4

T3

Start T2
End T5

Artifact

Artifact

Figure 6.4: Time constraints in OPM

Definitions of legal OPM graph

Two definitions of legal OPM graph have been proposed in [Moreau et al., 2011] and

[Kwasnikowska et al., 2010], respectively.

In the specification of the version 1.1 [Moreau et al., 2011] the following definition

of legal OPM graph has been introduced: within an account, an artifact has to be

generated by a single process (i.e., at most one wasGeneratedBy edge per artifact

must exist) to avoid conflicts about the artifact origin; moreover, even if cycles can

be expressed in the syntax of OPM, to be legal – within an account – the graph has

to be acyclic, so that it accurately expresses causal dependencies between processes

and artifacts; by extension, an OPM graph is said to be legal if all its account views

are legal.

In [Kwasnikowska et al., 2010] a temporal semantics for OPM has been defined

in terms of a set of ordering constraints between time-points associated with OPM
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constructs (i.e., the beginning of a process, the ending of a process, the instant a

process uses an artifact, and the moment a process creates an artifact). In this OPM

formalization, the edges used in the graphs are further categorized into precise and

imprecise edges (except the wasControlledBy edge, which is not considered because

the agent node is not mentioned). Precise edges are syntactically marked by the

presence of roles to characterize the nature of the relationship between the source

and the destination of the edge; by contrast, imprecise edges do not have roles

and represent incomplete information. Moreover, a role can be assigned also to the

wasDerivedFrom edge, while in the specification of the version 1.1 this possibility

was not considered.

Therefore, the definition of legal OPM graph has been modified as follows: an

OPM graph is called legal if: (1) for each artifact A there is at most one precise

wasGeneratedBy edge, and (2) for each precise wasDerivedFrom edge with role r

connecting A to the artifact B, there is a process P connected to B with a precise

used edge characterized by the same role r and connected to A through a precise

wasGeneratedBy edge. The configuration described in (2) is called a use-generate-

derive triangle.

Graph serialization

OPM is an abstract data model to represent past execution and does not specify the

internal representations or protocols that systems have to adopt to store provenance

information in repositories nor to query provenance repositories. However, an OPM

graph can be serialized in different formats, such as OPM XML Schema and OPM

RDF Schema, and in these formats it can be used to export from and to upload to

existing systems information about data provenance.

An OPM graph for the case study

In figure 6.5 a partial OPM graph for the case study is shown (in the graph the

roles on the edges are not displayed; moreover, the names of the edges, except the

one for the used relation, are shortened in the following way: WGB for wasGener-

atedBy, WDF for wasDerivedFrom, WTB for wasTriggeredBy, and WCB for was-

ControlledBy ; moreover, the wasDerivedFrom edges are drawn with dashed lines).

The OPM graph represents the main activities involved in the data collection

process from the point of view of both JRC and Member States. Each Member

State collects row data through the actions of national public or private institutes;

afterwards, the collected data are aggregated at national level. For each Member

State a national correspondent coordinates the data collection activities and sends
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the data to JRC on the basis of requests coming from the European Commission.

Finally, JRC receives and maintains the data that are then at disposal of the experts.

The graph in figure 6.5 is referring only to two Member States (Finland and

Denmark); similar subgraphs are replicated for all the other Member States.

6.2 Comments and extension proposal

Legal graph definitions

As already mentioned in the previous paragraph, two different definitions of legal

OPM graph were proposed in [Moreau et al., 2011] and in [Kwasnikowska et al.,

2010], respectively.

We observed that in the formalization given in [Kwasnikowska et al., 2010],

it is not explicitly mentioned the case in which an artifact, which has imprecise

wasGeneratedBy edges, does not have any precise wasGeneratedBy edges (i.e., with

a role specified for it). Thus, there are no indication about which are the constraints

that have to be applied in a case like this to obtain a legal OPM account.

In the present work, to be able to deal with OPM graphs showing cases like

the mentioned one, when we utilize the definition given in [Kwasnikowska et al.,

2010] we assume that for artifacts with no precise wasGeneratedBy edges the legal

definition given in the OPM specification version 1.1 has to be applied.

Agents and artifacts

The notion of agent, as recognized also by the authors of the OPM model, is not

well defined yet.

In order to better exploit the concept of agent, we propose to add, between an

artifact and an agent, a relation implied by a couple of existing edges: a wasCon-

trolledBy edge between a process P and an agent Ag, and a wasGeneratedBy edge

between an artifact A and the same process P. An example of this relation between

an artifact and an agent is shown in figure 6.6, where the derived edge is drawn with

a dashed line.

It is also possible to have a multi-step version of this inferred relation, written

as A→*Ag, meaning that artifact A “was controlled by” agent Ag (possibly using

multiple steps), if A was generated by a process P controlled by the agent Ag or

was derived from an artifact (possibly using multiple steps) that was generated by a

process P controlled by the agent Ag. Figure 6.7 shows an example of the proposed

multi-step edge between an artifact and an agent, where the multi-step edge is drawn

with a dotted-dashed line.
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A

wasGeneratedBy
wasControlledBy

Ag

P

A

wasGeneratedBy
wasControlledBy

Ag

P

Figure 6.6: An inferred relation between an artifact and an agent

Both the inferred relation and the multi-step relation based on it can be used in

answering queries about artifacts dependencies on agents.

Subtypes for the wasDerivedFrom edge

In some contexts, it could be useful to distinguish among transformed data and

copied data; namely, among artifacts that were derived from other artifacts through

modifications or through a copy of the input. This can be obtained introducing in

the OPM graph subtypes for the wasDerivedFrom edge, such as wasTransformFrom

and wasCopiedFrom edges.

In the current version of the model, this target can be reached using annotations.

For example, we can define an annotation containing in the property the label edge-

SubType and in the value one of the two labels: transformedFrom or copyOf. It

could also be established that the absence of the annotation refers by default to

transformed data and only for copied data the annotation is present.
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Figure 6.7: The multi-step edge artifact-agent

6.3 W3C Provenance Working Group

The authors that proposed the Open Provenance Model are currently participating

in the activities of the W3C2 Provenance Working Group.

The mission of the W3C Provenance Working Group is to support the wide-

spread publication and use of provenance information of Web documents, data and

resources. In particular, the W3C Provenance Working Group is working at a family

of specifications, called PROV, with the target to help in defining how to interchange

provenance information.

The activities of the Working Group are based on an extensive review and

roadmap developed by a prior incubator group. As indicated in the Incubator

Group’s report [Gil et al., 2010], many provenance models exist with significantly

different expressiveness and different assumptions about the systems they are em-

bedded in. It does not seem realistic today that a single way of representing and

collecting data provenance could be adopted internally by all systems. For this

reason, the proposal of the W3C Provenance Incubator Group has been, with a

pragmatic approach, to consider a core provenance language with an extension mech-

anism that allows domain and application specific representations of provenance to

be translated into such a language and exchanged among systems. Heterogeneous

systems can then export their provenance models into such a core language, and

different applications can import it and reason over it.

The work of the W3C Provenance Incubator Group finished in 2010, and cur-

rently the W3C Provenance Working Group is working – on the directions indicated

in the final report produced by the Incubator Group [Gil et al., 2010] – with the

2http://www.w3.org
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objective to define a provenance interchange language and methods to publish and

access data provenance using that language.

On July 2012 the W3C Provenance Working Group published the Last Call

Working Draft of the PROV Data Model for provenance (PROV-DM), a generic data

model for provenance. PROV-DM is a domain-agnostic model with extensibility

capabilities allowing further domain-specific and application-specific extensions to

be defined.

PROV-DM distinguishes core structures, forming the essence of provenance, from

extended structures allowing more specific uses of provenance. At its core, prove-

nance describes the use and production of entities by activities, which may be in-

fluenced in various ways by agents. PROV-DM is based on three types of nodes –

called entity, activity, and agent – and on seven relations: wasGeneratedBy, used,

wasInformedBy, wasDerivedFrom, wasAttributedTo, wasAssociatedWith, and acte-

dOnBehalfOf.

The PROV-DM core structure presents many similarities with the Open Prove-

nance Model. They share the same types of nodes: in OPM entities are called arti-

facts, activities are called processes, and agents have the same name. Concerning the

relations provided in the models, PROV-DM is richer than OPM, and thus it has a

higher expressiveness. Five of the seven relations present in PROV-DM correspond

to the OPM edges. The wasGeneratedBy, used, and wasDerivedFrom relations have

same names and same meanings in both the models, while the relations called was-

InformedBy and wasAssociatedWith correspond respectively to the wasTriggeredBy

and wasControlledBy edges in OPM. Moreover, PROV-DM provides two more rela-

tions called wasAttributedTo and actedOnBehalfOf : the wasAttributedTo relation

can exist between an entity and an agent, and actedOnBehalfOf models a relation

between two agents.



CHAPTER 7

OPM Graph Design

By graph design method we mean a set of transformation rules to be applied in order

to derive a correct graph, with respect to the initial specifications (e.g., a natural

language description).

Design methods and methodologies are widely used both in database and work-

flow systems. Dealing with data and being based on the workflow concept, also the

OPM model can benefit from the exploitation of a design method.

In this chapter, we describe a method for the design of OPM graphs. In the

proposed design approach, two phases can be identified: a conceptual phase and

a physical phase. In the conceptual phase, concepts and their relationships are

identified and mapped into OPM elements; while the physical phase refers to the

serialization of the graph into the corresponding XML structure.

In the presentation of the method, we focus on the drawing of an OPM graph

containing a single account, even if more accounts can be design together.

It is important to be aware that starting from the description of a dataset and

of the workflow generating it, it is possible to produce different OPM graphs.

As already mentioned previously, two different definitions of legal OPM graph

have been proposed (in [Moreau et al., 2011] and in [Kwasnikowska et al., 2010],

respectively). Being the first definition part of the current reference specification

of the model and the second a better interpretation of the semantics of the “was

derived from” relation, in the following we will refer to both of them specifying,

when necessary, the differences in adopting one or the other.

7.1 Entity clusters and abstract subgraphs

In the design of an OPM graph containing several entities, two concepts can be

useful: entity cluster and abstract subgraph.
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An entity cluster [Hoffer et al., 2007] represents a set of entities and associated

relationships grouped into a single abstract entity. In an OPM graph, in particular,

an abstract entity is represented by an abstract node, which can be an artifact, a

process or an agent. The idea of entity cluster has been demonstrated to be very

useful in the Entity-Relationship model design [Elmasri and Navathe, 2000] when

working with large graphs; details can be temporarily ignored to concentrate on the

main entities and relationships, approaching the modeling with a top-down view.

An abstract subgraph is an outline of the provenance graph structure without

the instance information about actual entities. The use of an abstract subgraph can

be useful when the same substructure is present in an OPM graph more than once.

An example of an abstract subgraph in the case study context is shown in figure

7.1; in this example, the abstract subgraph (enclosed in the shaded box) represents

a portion of the graph that has to be replicated for each Member State. Another

abstract subgraph will be used in the example shown later in this chapter (see figure

7.11).

7.2 Starting steps: nodes and edges

An analysis of the life cycle of data, or of the portion of the data life cycle of

interest, is the prerequisite step in the design of an OPM graph. The main result

of this analysis is the identification of the actors and processes that are involved in

the creation and transformation of the data.

During the analysis phase, an important preliminary decision has to be taken

about the data granularity that will be used in the model.

Afterwards, to draw the graph it is necessary to start identifying the entities that

will be inserted in the graph itself. Having chosen a top-down approach, the main

data and, therefore, the main artifacts to be used in the model have to be identified.

If one of the identified artifacts refers to more than one entity, it can be represented

by an entity cluster, and it can be useful drawing it with a double line in order not

to forget the need to expand its description in the next steps of the design.

The identification of the participants is the next step, meaning the identification

of the agents that will be inserted in the graph.

Having chosen the nodes for artifacts and agents, it is time to consider the

processes. In the next steps of the graph design, two tables can help (figure 7.2). The

first table lists the identified artifacts and for each artifact: the processes generating

and using it, the artifacts on which it depends, and the artifacts that are used as

sources for its generation. If there exist artifacts that are generated by more than

one process, it is useful to flag them.
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Figure 7.2: Tables for OPM entities

The second table contains a list of processes with the artifacts used and generated

by each process, the specification of existing dependencies among used and produced

artifacts, and the processes on which each process depends. In this table, it is also

useful to specify the agents that control each process. If in the first table some

artifacts are flagged as being generated by more than one process, the corresponding

processes need to be marked as well in the second table.

The tables filling procedure is typically an iterative exercise. The comparison

of the content of the two tables can help in identifying inconsistencies among the

provided information. For example, it can suggest that in the first table some

artifacts are missing or that some not yet considered dependency relations among

artifacts can exist. Furthermore, from the data provided in these tables, it is easy

to derive the types of the edges connecting the nodes.

Working with the version 1.1 of the OPM specification, in order to draw the

graph it is possible to proceed as follows: for each artifact listed in the first table,

we can draw (1) the artifact itself, (2) the artifacts on which it depends connected

through wasDerivedFrom edges, (3) the processes that use the artifact and the used

edges connecting them, and (4) the processes that generate the artifact with the

corresponding wasGeneratedBy edges. Only during the step (4) it is necessary to

consider if the current artifact was flagged in the first table, namely, if the artifact is

generated by more than one process. This can happen, for example, when an artifact

derives from the joining of the results of more than one process. In this case, to

comply with the legal graph definition, it is necessary to introduce an extra process,

even if it was not explicitly identified during the workflow analysis, representing

the merging step; figure 7.3 exemplifies how a legal graph can be obtained when an

artifact A is generated by more than one process. When all the artifacts listed in the
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Figure 7.3: An example of artifact generated by more than one process

first table are drawn, we can check in the second table if all the listed processes are

present in the graph. Referring to the second table, for each process we verify if the

cell in the column “dependent on processes” is not empty; for each process present

in this cell, we can draw a wasTriggeredBy edge. Lastly, the agent nodes have to

be inserted and connected through a wasControlledBy edge to the corresponding

processes as indicated in the second table.

Working with the legal graph definition provided in [Kwasnikowska et al., 2010],

further characteristics of the OPM graph have to be considered.

In this case, the model considers both precise and imprecise edges, so in order to

distinguish them, it is necessary to explicitly mention in the tables the role associated

to each relation. Having the role information, it is possible to verify the compliance

with the first part of the definition identifying in the first table the artifacts that are

generated by more than one process through a precise edge. Afterwards, in order

to verify the compliance with the second part of the definition, we can proceed
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as follows. For each artifact A1 contained in the table, we consider the column

“dependent on artifacts”: for each artifact A2 with an associated role r mentioned

in this column, we check if a use-generate-derive triangle exists. First of all, in the

row for the artifact A1, a process P with an associated role has to be present in the

column “generated by processes” (i.e., referring to a precise wasGeneratedBy edge);

moreover, in the row for the artifact A2, the same process P with role r has to be

present in the column “used by processes”.

7.3 Checking for cycles

An OPM graph is defined to be acyclic for each account, so it is important to check

the presence of cycles referring in particular to the wasDerivedFrom edges.

If the presence of a cycle is detected, the graph has to be modified. Firstly,

the analysis of the data life cycle has to be reconsidered to identify incorrect edges.

However, it is also possible that all the identified edges are correctly representing

the relationships among artifacts and processes; for example, when the result of a

process, or of a sequence of processes, is an input for the same process. In this case,

in order to remove the cycle, it is necessary to decide if it is possible to eliminate

the feedback edge.

The presence of cycles can be also verified after the serialization of the graph in

the corresponding XML format, as explained later in the chapter.

7.4 Redundancy check

A “was triggered by” relation between two processes can be inferred, using one of

the completion rules defined for the model (see chapter 6), from the existence of an

artifact linked to one of the processes through a wasGeneratedBy edge and to the

second process through a used edge. For this reason, when in an OPM graph two

processes are already connected by means of an artifact, the wasTriggeredBy edge

can be eliminated.

At the contrary, the presence of a wasDerivedFrom edge between two artifacts

with, at the same time, a process using one of the artifacts and generating the other

cannot be regarded as a redundancy. In fact, a wasDerivedFrom edge cannot be

derived from the mere existence of a process connecting two artifacts; it is necessary

(as explained in the description of the model in the previous chapter) to have some

knowledge about the internal behavior of the process itself.
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7.5 Graph reduction

If the application context allows it, it can be possible to perform two kinds of reduc-

tions on an OPM graph using the completion rules defined in the model, obtaining

in this way a more concise representation of the graph.

The first reduction can be applied if two processes are connected through an

artifact – generated by one of the two processes and used by the other one – that is

not used by other processes. If this artifact is considered not relevant for the appli-

cation context, it can be eliminated inserting a wasTriggeredBy edge between the

processes (see figure 6.2). It order not to loose relevant information, it is advisable

not to perform this kind of transformation when the involved artifact is connected

to another artifact through a wasDerivedFrom edge.

The second possible reduction is applicable when two artifacts are connected by

a wasDerivedFrom edge and also linked through a process – using one of the two

artifacts and generating the other one – that does not generate and does not use

other artifacts. In this case, the intermediate process can be eliminated if it is not

considered relevant for the application context. Moreover, if there is an agent linked

only to the deleted process, it will be removed as well from the graph.

7.6 The method in practice: an example

To illustrate the described design approach, we consider a simplified version of the

production procedure of the Indices of Consumer Prices provided by the Italian

National Bureau of Census (Istituto Nazionale di Statistica, whose acronym is Istat).

These indices are economic indicators that measure the change over time of the prices

of consumer goods and services. In particular, Istat provides three different kinds of

indices for consumer prices: an index for the whole population, called NIC; an index

for employee families, called FOI; and the harmonized index of consumer prices,

called IPCA or HICP used at the European Union level.

IndicesPrices Report
WGBWGB

Figure 7.4: Istat example: first sketch

In order to compute these indices, Istat composes a “basket” of goods and ser-

vices that reflects the representative consumption pattern of all types of households

in the country. Data are collected in two ways: at central level, directly by Istat,
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Figure 7.5: Istat example: the table for the artifacts
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Figure 7.6: Istat example: the table for the processes
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Figure 7.7: Istat example: the modified table for the artifacts
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Figure 7.8: Istat example: the modified table for the processes
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for goods and services having uniform prices on the whole national territory; at

territorial level, by Municipal Offices of Statistics in the towns participating in the

survey, prices are collected through questionnaires or palm PC and, later on, regis-

tered and checked. Not all the components in the basket have the same weight: food

is purchased almost daily, fuel for a car perhaps weekly, and car insurance is paid

once a year. So each item must be weighted to reflect its importance in a household

budget (in the OPM graph the production processes for the nodes called Basket of

Products and Product Weight are mentioned, but we do not provide the description

of the processes producing these artifacts).

In this example, we refer to the legal graph definition proposed in the OPM

version 1.1. The design steps of the OPM graph for the described example are

shown in figures 7.4 – 7.11. Figure 7.4 shows a basic sketch, at a very high level

of abstraction, of the leading artifacts. The tables listing respectively artifacts and

processes are reported in figures 7.5 and 7.6. Figures 7.7 and 7.8 show the same

two tables modified to solve the problem of having two processes generating the

artifact called Prices (the shaded rows were deleted, while the new rows were added

at the end of each table). Afterwards, figure 7.9 shows the subgraphs, figure 7.10 the

merged graph, and figure 7.11 the complete graph with the agents (in the graphs built

for the example the roles on the edges are not displayed and the names of the edges,

except the one for the used relation, are shortened in the following way: WGB for

wasGeneratedBy, WDF for wasDerivedFrom, WTB for wasTriggeredBy, and WCB

for wasControlledBy ; moreover, the wasDerivedFrom and wasControlledBy edges

are drawn with dashed lines). In the final graph, shown in figure 7.11, the subgraph

enclosed in the shaded box is an abstract subgraph generally representing the price

collection activities performed by the Municipal Offices of Statistics. In the actual

OPM graph, this abstract subgraph has to be replaced with the entities referring to

each Municipal Office of Statistics and its data collection activity.

7.7 Is the designed graph legal?

It is a good practice to verify if the obtained OPM graph is legal, according to the

chosen definition. If the graph contains one or more nodes that are not satisfying

the definition of legal graph, then it has to be modified.

First of all, it is necessary to analyze if the cause is an incorrect representation of

the relationships among the entities in the graph and correct them. Otherwise, if the

relationships among the entities are correctly modeled, a different way of expressing

the same meaning, but in accordance with the definition of legal OPM graph, has

to be found.
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A final verification of the constraints on the graph can be also executed after the

serialization of the graph in the corresponding XML format, as explained later in

the chapter.

7.7.1 Transformation hints

In order to reach the target to obtain a legal graph, we suggest some common trans-

formations that can be used to modify a graph. The proposed transformation hints

derive from the definitions of legal OPM graph and from the completion operations

defined for the model.

used

used wasGeneratedBy

wasGeneratedBy

used(role1)

used(role1)
wasGeneratedBy(role2)

wasGeneratedBy(role3)

wasDerivedFrom(role1)

wasDerivedFrom(role1)

wasDerivedFrom(role1)

P1 P2

P1
P2

A1

A3
A2

A2

A3

A1

Figure 7.14: Transformation rule

The first graph shown in figure 7.12 is not legal with respect to the definition of

legal OPM graph given in the version 1.1 of the model; in fact, in the graph there

are two wasGeneratedBy edges for the same artifact A. This can happen when an

artifact is generated using the data produced by more than one process. In this

case, a possible solution (as it was already mentioned previously) is the insertion of



O
P

M
G

rap
h

D
esign

93

A2

wasGeneratedBy

wasTriggeredBy

used

A1

wasDerivedFrom(role1)

A2

wasGeneratedBy(role2)

wasTriggeredBy

used

A1

wasDerivedFrom(role1)

used(role1)

A2

wasGeneratedBy(role2) used(role1)

A1

wasDerivedFrom(role1)

used(role1)

A3

wasGeneratedBy(role3)

wasDerivedFrom(role1)

P2

P2

P1

P1

P2
P1

F
ig

u
re

7
.1

5
:

T
ran

sform
ation

ru
le



OPM Graph Design 94

an intermediate process merging the data produced by the original processes.

The other proposed transformations can apply to graphs that do not comply

with the definition of legal graph introduced in [Kwasnikowska et al., 2010].

In figure 7.13, the shown graph is not legal because it does not satisfy the sec-

ond condition contained in the definition. There are two possible solutions: or the

artifacts A2 and A3 are in reality the same artifact, or a used edge connecting the

process P with the artifact A3 has to be added. Figure 7.14 and 7.15 show other

two examples of graphs that do not comply with the mentioned definition for the

presence of a precise wasDerivedFrom edge without a use-generate-derive triangle;

the corresponding transformations into legal forms are also shown.

7.7.2 Constraints on time information

The presence of timestamps on the edges of an OPM graph determines the need to

execute a further check against the temporal constraints defined in the model. This

check can be done on the graph comparing each timestamp with the timestamps

of the contiguous edges, but it is easier to verify the temporal constraints after the

serialization of the graph in the corresponding XML format, as explained later in

the chapter.

7.8 Physical modeling

The target of this phase of the design is to transform the OPM conceptual graph

into a physical format; in particular, we used the XML format.

The specification of the XML Schema for the version 1.1 of OPM can be found

in [Groth and Moreau, 2010]. Not being aware of any published specifications for

the XML structure of the OPM version described in [Kwasnikowska et al., 2010], we

extended the XML Schema of the version 1.1.

The main changes are related to the wasDerivedFrom and the wasGeneratedBy

edges. As shown in the following, the code for the complexType defining the was-

DerivedFrom edge was modified adding the role element:

<xs:complexType name="WasDerivedFrom">

<xs:sequence>

<xs:element type="opmx:ArtifactRef" name="effect"/>

<xs:element type="opmx:ArtifactRef" name="cause"/>

<xs:element type="opmx:Role" name="role"

minOccurs="0" maxOccurs="1"/>

<xs:element type="opmx:AccountRef" name="account"
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minOccurs="0" maxOccurs="unbounded"/>

<xs:element type="opmx:OTime" name="time" minOccurs="0"/>

<xs:element minOccurs="0" maxOccurs="unbounded"

ref="opmx:annotation"/>

</xs:sequence>

<xs:attribute type="xs:ID" name="id"/>

</xs:complexType>

Moreover, the code for the complexType that defines the wasGeneratedBy edge was

modified changing the role element from mandatory to optional:

<xs:complexType name="WasGeneratedBy">

<xs:sequence>

<xs:element type="opmx:ArtifactRef" name="effect"/>

<xs:element type="opmx:Role" name="role"

minOccurs="0" maxOccurs="1"/>

<xs:element type="opmx:ProcessRef" name="cause"/>

<xs:element type="opmx:AccountRef" name="account"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element type="opmx:OTime" name="time" minOccurs="0"/>

<xs:element minOccurs="0" maxOccurs="unbounded"

ref="opmx:annotation"/>

</xs:sequence>

<xs:attribute type="xs:ID" name="id"/>

</xs:complexType>

We use a top-down approach to derive the XML tree structure from the graph.

We start the top-down serialization creating an empty opmGraph tag. Accounts do

not have a graphical representation, even if they can be distinguished by means of

colors when it is necessary to draw them into a single graph; however, they need

to be defined in the XML code. So we add an empty accounts tag and, for each

account that is referred into the graph, an account tag with an appropriate iden-

tifier. After the accounts are defined, we add three empty tags called artifacts,

processes, and agents, then under them we add every artifact, process, and agent.

Afterwards, we insert an empty dependencies tag that will contain all the edges of

the graph. In order to serialize the edges, for each process, we add the corresponding

used and wasTriggeredBy edges; for each artifact, we add the corresponding was-

GeneratedBy and wasDerivedFrom edges; for each agent, we add the corresponding

wasControlledBy edges.
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7.8.1 Physical model validation

After the serialization of an OPM graph in the XML format, it is possible to verify

the correctness of the XML structure and also if the constraints related to the

definition of legal OPM graph are satisfied.

We approached this task exploiting the potentialities of Schematron [van der

Vlist, 2007], as we did for the validation of the XML codification of the data quality

rules (see chapter 4). However, because of the central role played by XPath, cycles

that could arise with the “was derived from” relations cannot be detected using

native Schematron assertions. For this reason, the adopted solution consisted in

using Schematron assertions with in addition an ad hoc XSLT function that checks

the presence of cycles in the wasDerivedFrom edges. The developed XSLT function

can be added to the Schematron schema and called into a Schematron assertion.

In the following, we list the more relevant checks among those performed through

the Schematron schema and the corresponding code to express them:

– At most one wasGeneratedBy edge per artifact is allowed (OPM specification

version 1.1):

<iso:rule context="dependencies">

<iso:assert test="count(wasGeneratedBy) =

count(wasGeneratedBy[not(effect/@ref =

preceding-sibling::wasGeneratedBy/effect/@ref)])">

At most one wasGeneratedBy edge per artifact is allowed

</iso:assert>

</iso:rule>

– At most one precise wasGeneratedBy edge per artifact is allowed (legal OPM

graph definition in [Kwasnikowska et al., 2010]):

<iso:rule context="dependencies">

<iso:assert test="count(wasGeneratedBy[role]) =

count(wasGeneratedBy[role and not(effect/@ref =

preceding-sibling::wasGeneratedBy/effect/@ref)])">

At most one precise wasGeneratedBy edge

per artifact is allowed

</iso:assert>

</iso:rule>



OPM Graph Design 97

– A use-generate-derive triangle must exist for every precise wasDerivedFrom

edge, with role r, connecting artifact A1 and artifact A2 (legal OPM graph

definition in [Kwasnikowska et al., 2010]); that is, two more edges are nec-

essary: a precise wasGeneratedBy edge connecting A1 to a process P and a

precise used edge, with role r, connecting the same process P to A2.

<iso:rule context="wasDerivedFrom">

<let name="a1ID" value="effect/@ref"/>

<let name="a2ID" value="cause/@ref"/>

<iso:assert test="role and

../wasGeneratedBy[role and effect/@ref=$a1ID]/cause/@ref =

../used[role and cause/@ref=$a2ID]/effect/@ref and

../used[cause/@ref=$a2ID]/role/@id=role/@id">

For every precise wasDerivedFrom edge connecting

artifact A1 and artifact A2, a wasGeneratedBy edge

connecting A1 with a process and a used edge

connecting the same process to A2 are necessary

</iso:assert>

</iso:rule>

– A wasTriggeredBy edge can connect only distinct processes (i.e., if P1 → P2

then P16=P2):

<iso:rule context="wasTriggeredBy">

<iso:assert test="not(effect/@ref=cause/@ref)">

The processes connected by a wasTriggeredBy edge

have to be distinct

</iso:assert>

</iso:rule>

– A wasDerivedFrom edge can connect only distinct artifacts (i.e., if A1 → A2

then A16=A2):

<iso:rule context="wasDerivedFrom">

<iso:assert test="not(effect/@ref=cause/@ref)">

The artifacts connected by a wasDerivedFrom edge

have to be distinct

</iso:assert>

</iso:rule>
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Other checks performed with Schematron implement the temporal constraints de-

fined in the model.

The complete Schematron schema can be found in appendix B.

7.9 Comments and related works

Data provenance is an important topic for the evaluation of the trustworthiness of

a dataset, but it is not yet enough considered as a standard component in the data

management systems both in industrial and in scientific contexts.

OPM, which is a model to represent provenance information, has been proposed

as an interchange format among different systems.

In this work, we presented an approach that allows the design of OPM graphs

satisfying the two definitions of legal graph provided in literature. The proposed

approach is composed of two phases: in the conceptual phase, concepts and their

relationships are identified and mapped into OPM elements; while the physical phase

refers to the serialization of the OPM graph into the corresponding XML structure

with the validation of the generated XML document.

Although OPM has been used in connection with different provenance systems,

we are not aware of any methods or methodologies for the design of OPM graphs.

In a different context of the data provenance field, however, a software engineer-

ing methodology called Provenance Incorporating Methodology (PrIMe) has been

proposed [Miles et al., 2011].

PrIMe is a guided approach for making applications provenance-aware. Its target

is the identification of the changes necessary to enable an application to interact with

a provenance middleware layer. PrIMe is based on three different phases: (1) the

identification of provenance use cases and the pieces of information that will be

used to answer them, (2) the decomposition of the application into a set of actors

and their interactions, and (3) the implementation of a set of adaptations to the

application in order to ensure that the required information items are available for

documentation.



CHAPTER 8

Storing and Querying OPM Graphs

OPM graphs can be used to accompany datasets in order to show their provenance

information to final users. In particular, it can be useful for data that are published

on the World Wide Web. However, to be effective for a real-world application, a

provenance tool should provide facilities to query provenance information and data

items. To provide functionalities of this kind, it may be an advantage to have the

provenance information stored with the data themselves. To achieve this target,

when using an OPM graph to model provenance information, it is possible to store

in a repository the graph and connect it to the archive of the original data, having

therefore a straightforward way to perform queries on both the graph and the data.

In this chapter, we describe the solution adopted to store an OPM graph into a

relational database and the approach developed to query the information contained

in the OPM graph.

8.1 Storing OPM graphs

To store OPM graphs in a relational database, firstly we designed an Entity Rela-

tionship diagram [Elmasri and Navathe, 2000] for the OPM model and translated

it into a relational schema; the second step was the definition of the connection

with the data. In figure 8.1 an Entity Relationship diagram for the OPM model is

shown (we refer to the OPM specification version 1.1). From the Entity Relationship

diagram the following relational schema was derived:

Artifact(artifactId, value)

Process(processId, value)

Agent(agentId, value)

WasDerivedFrom(wasDerivedFromId, derivedArtifactId, sourceArtifactId)



Storing and Querying OPM Graphs 100

Unique key [derivedArtifactId, sourceArtifactId]

WasGeneratedBy(wasGeneratedById, artifactId, processId, role)

Unique key [artifactId, processId, role]

Used(usedId, processId, artifactId, role)

Unique key [processId, artifactId, role]

WasControlledBy(wasControlledById, processId, agentId, role)

Unique key [processId, agentId, role]

WasTriggeredBy(wasTriggeredById, triggeredProcessId, sourceProcessId)

Unique key [triggeredProcessId, sourceProcessId]

ArtifactAnnotation(artifactId, property, value)

AgentAnnotation(agentId, property, value)

ProcessAnnotation(processId, property, value)

WasDerivedFromAnnotation(wasDerivedFromId, property, value)

WasGeneratedByAnnotation(wasGeneratedById, property, value)

UsedAnnotation(usedId, property, value)

WasControlledByAnnotation(wasControlledById, property, value)

WasTriggeredByAnnotation(wasTriggeredById, property, value)

ArtifactAccount(artifactId, accountName)

AgentAccount(agentId, accountName)

ProcessAccount(processId, accountName)

WasDerivedFromAccount(wasDerivedFromId, accountName)

WasGeneratedByAccount(wasGeneratedById, accountName)

UsedAccount(usedId, accountName)

WasControlledByAccount(wasControlledById, accountName)

WasTriggeredByAccount(wasTriggeredById, accountName)

WasDerivedFromTime(wasDerivedFromId, time)

WasGeneratedByTime(wasGeneratedById, time)

UsedTime(usedId, time)

WasControlledByTime(wasControlledById, startTime, endTime)

WasTriggeredByTime(wasTriggeredById, time)

The OPM graph developed for the case study was serialized in the XML format (the

XML Schema specification for OPM version 1.1 can be found in [Groth and Moreau,

2010]) and then imported in the PostgreSQL database.

8.1.1 Views for multi-step relations

As already introduced in chapter 6, the multi-step wasDerivedFrom edge and three

secondary multi-step edges were defined for OPM in [Moreau et al., 2011] to allow
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the expression of queries and inferences in OPM graphs.

We implemented the four multi-step edges defined in the model (A1 → ∗A2, P →

∗A, A → ∗P , and P2 → ∗P1) and the new one proposed in this work (A → ∗Ag, see

chapter 6) in the PostgreSQL database through views. In particular, the multi-step

wasDerivedFrom A1 → ∗A2 edge was defined using the SQL WITH RECURSIVE clause

which implements the Common Table Expression (CTE) defined in the SQL:1999

standard and available in PostgreSQL. In the database systems that do not support

the CTE, the same result can be achieved implementing the necessary routines to

extract the desired links among artifacts, for example, using stored procedures.

The defined views allow an easy approach in querying multi-step inferences on

OPM graphs.

Multi-step wasDerivedFrom A1→*A2

CREATE OR REPLACE VIEW MultiStepWasDerivedFrom AS

WITH RECURSIVE tempWasDerivedFromView(derivedArtifactId,

sourceArtifactId) AS (

SELECT derivedArtifactId, sourceArtifactId, accountName

FROM WasDerivedFrom, WasDerivedFromAccount

WHERE WasDerivedFrom.wasDerivedFromId =

WasDerivedFromAccount.wasDerivedFromId

UNION

SELECT T.derivedArtifactId, WasDerivedFrom.sourceArtifactId,

T.accountName

FROM WasDerivedFrom, WasDerivedFromAccount,

tempWasDerivedFromView T

WHERE WasDerivedFrom.derivedArtifactId = T.sourceArtifactId

AND WasDerivedFrom.wasDerivedFromId =

WasDerivedFromAccount.wasDerivedFromId

AND T.accountName = WasDerivedFromAccount.accountName

)

SELECT derivedArtifactId, sourceArtifactId, accountName

FROM tempWasDerivedFromView

ORDER BY sourceArtifactId, derivedArtifactId, accountName

Multi-step used P→*A

CREATE OR REPLACE VIEW MultiStepUsed AS

SELECT processId, artifactId, accountName
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FROM Used, UsedAccount

WHERE Used.usedId = UsedAccount.usedId

UNION

SELECT Used.processId, MultiStepWasDerivedFrom.sourceArtifactId,

UsedAccount.accountName

FROM Used, UsedAccount, MultiStepWasDerivedFrom

WHERE Used.artifactId = MultiStepWasDerivedFrom.derivedArtifactId

AND Used.usedId = UsedAccount.usedId

AND MultiStepWasDerivedFrom.accountName = UsedAccount.accountName

Multi-step wasGeneratedBy A→*P

CREATE OR REPLACE VIEW MultiStepWasGeneratedBy AS

SELECT artifactId, processId, accountName

FROM WasGeneratedBy, WasGeneratedByAccount

WHERE WasGeneratedBy.wasGeneratedById =

WasGeneratedByAccount.wasGeneratedById

UNION

SELECT MultiStepWasDerivedFrom.derivedArtifactId,

WasGeneratedBy.processId, WasGeneratedByAccount.accountName

FROM WasGeneratedBy, WasGeneratedByAccount, MultiStepWasDerivedFrom

WHERE WasGeneratedBy.artifactId =

MultiStepWasDerivedFrom.sourceArtifactId

AND WasGeneratedBy.wasGeneratedById =

WasGeneratedByAccount.wasGeneratedById

AND MultiStepWasDerivedFrom.accountName =

WasGeneratedByAccount.accountName

Multi-step wasTriggeredBy P2→*P1

CREATE OR REPLACE VIEW MultiStepWasTriggeredBy AS

SELECT triggeredProcessId, sourceProcessId, accountName

FROM WasTriggeredBy, WasTriggeredByAccount

WHERE WasTriggeredBy.wasTriggeredById =

WasTriggeredByAccount.wasTriggeredById

UNION

SELECT Used.processId, WasGeneratedBy.processId,

UsedAccount.accountName

FROM Used, WasGeneratedBy, UsedAccount, WasGeneratedByAccount
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WHERE WasGeneratedBy.artifactId = Used.artifactId

AND WasGeneratedBy.wasGeneratedById =

WasGeneratedByAccount.wasGeneratedById

AND Used.usedId = UsedAccount.usedId

UNION

SELECT Used.processId, WasGeneratedBy.processId,

UsedAccount.accountName

FROM Used, WasGeneratedBy, UsedAccount,

WasGeneratedByAccount, MultiStepWasDerivedFrom

WHERE WasGeneratedBy.artifactId =

MultiStepWasDerivedFrom.sourceArtifactId

AND Used.artifactId =

MultiStepWasDerivedFrom.derivedArtifactId

AND WasGeneratedBy.wasGeneratedById =

WasGeneratedByAccount.wasGeneratedById

AND Used.usedId = UsedAccount.usedId

AND MultiStepWasDerivedFrom.accountName =

WasGeneratedByAccount.accountName

AND MultiStepWasDerivedFrom.accountName = UsedAccount.accountName

Multi-step artifact-agent edge A→*Ag

The following view implements the multi-step edge between an artifact and an agent

as defined in the second paragraph of chapter 6.

CREATE OR REPLACE VIEW MultiStepArtifactWasControlledBy AS

SELECT artifactId, agentId, accountName

FROM WasControlledBy, WasGeneratedBy,

WasControlledByAccount, WasGeneratedByAccount

WHERE WasControlledBy.processId = WasGeneratedBy.processId

AND WasControlledBy.wasControlledById =

WasControlledByAccount.wasControlledById

AND WasGeneratedBy.wasGeneratedById =

WasGeneratedByAccount.wasGeneratedById

AND WasControlledByAccount.accountName =

WasGeneratedByAccount.accountName

UNION

SELECT MultiStepWasDerivedFrom.derivedArtifactId,

WasControlledBy.agentId, WasControlledByAccount.accountName



Storing and Querying OPM Graphs 105

FROM WasControlledBy, WasGeneratedBy, WasControlledByAccount

WasGeneratedByAccount, MultiStepWasDerivedFrom

WHERE WasGeneratedBy.artifactId =

MultiStepWasDerivedFrom.sourceArtifactId

AND WasControlledBy.processId = WasGeneratedBy.processId

AND WasControlledBy.wasControlledById =

WasControlledByAccount.wasControlledById

AND WasGeneratedBy.wasGeneratedById =

WasGeneratedByAccount.wasGeneratedById

AND WasControlledByAccount.accountName =

WasGeneratedByAccount.accountName

AND MultiStepWasDerivedFrom.accountName =

WasGeneratedByAccount.accountName

8.1.2 OPM graph validation

Having an OPM graph stored in a relational database, it is easy to check if the graph

itself is valid with respect to the definitions provided for the model and also if the

timestamps expressed on the edges are consistent. In the developed validation step

both the definitions of legal OPM graph were considered.

For the definition given in the model specification version 1.1 [Moreau et al.,

2011], for each artifact at most one wasGeneratedBy edge is required. To identify

the records that do not comply with this condition, it is possible to verify if in the

WasGeneratedBy table there is more than one record with the same artifactId and

accountName, for example, through the following SQL statement:

SELECT artifactId, accountName, COUNT(*)

FROM WasGeneratedBy, WasGeneratedByAccount

WHERE WasGeneratedBy.wasGeneratedById =

WasGeneratedByAccount.wasGeneratedById

GROUP BY artifactId, accountName HAVING COUNT(*)>1

For the definition used in [Kwasnikowska et al., 2010], the first condition to be

verified is that an artifact can have at most one precise wasGeneratedBy edge. This

can be done considering the role in the WasGeneratedBy table:

SELECT artifactId, accountName, COUNT(*)

FROM WasGeneratedBy, WasGeneratedByAccount

WHERE WasGeneratedBy.wasGeneratedById =

WasGeneratedByAccount.wasGeneratedById
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AND WasGeneratedBy.role IS NOT NULL

GROUP BY artifactId, accountName HAVING COUNT(*)>1

The second condition to be verified is the existence of a use-generate-derive triangle

for each precise wasDerivedFrom edge. Namely, for a precise wasDerivedFrom edge

connecting artifact A1 and artifact A2, it is required to have a process linked to

A1 through a precise wasGeneratedBy edge and to A2 through a precise used edge;

moreover, the used edge has to be characterized by the same role present in the

wasDerivedFrom edge. In order to deal with this constraint, it was necessary to

modify the table WasDerivedFrom adding the role for the “was derived from” relation

(for this kind of edge the role was not considered in the OPM version 1.1).

WasDerivedFromBis(wasDerivedFromId, derivedArtifactId,

sourceArtifactId, role)

Unique key [derivedArtifactId, sourceArtifactId, role]

Using this new table, the following SQL statement selects all the artifacts that do

not comply with the given constraint.

SELECT derivedArtifactId FROM WasDerivedFromBis

WHERE derivedArtifactId NOT IN ( SELECT derivedArtifactId

FROM WasDerivedFromBis, WasGeneratedBy, Used,

WasDerivedFromAccount, WasGeneratedByAccount, UsedAccount

WHERE WasGeneratedBy.processId = Used.processId

AND WasDerivedFromBis.derivedArtifactId = WasGeneratedBy.artifactId

AND WasDerivedFromBis.sourceArtifactId = Used.artifactId

AND WasGeneratedBy.wasGeneratedById =

WasGeneratedByAccount.wasGeneratedById

AND WasDerivedFromBis.wasDerivedFromId =

WasDerivedFromAccount.wasDerivedFromId

AND Used.usedId = UsedAccount.usedId

AND WasGeneratedByAccount.accountName = UsedAccount.accountName

AND WasDerivedFromAccount.accountName = UsedAccount.accountName

AND WasGeneratedBy.role IS NOT NULL

AND WasDerivedFromBis.role IS NOT NULL

AND Used.role IS NOT NULL AND WasDerivedFromBis.role = Used.role )

A check valid for both the given definitions is the one related to the presence of

cycles in a graph: an OPM valid view – for a single account – does not contain “was

derived from” cycles. This condition can be easily verified by means of the view im-

plementing the multi-step wasDerivedFrom edge. Other relevant checks implement



Storing and Querying OPM Graphs 107

the OPM temporal constraints and are used when timestamps are specified on the

graph edges.

8.1.3 Mapping datasets to OPM graphs

OPM graphs stored in a relational database can be queried for artifacts provenance

information and for relations among artifacts, processes, and agents. However, to

be able to answer also questions about provenance information related to the actual

data, it is necessary to connect provenance information with the real datasets.

In the context of the case study used in this work, the data received from Member

States are stored in a PostgreSQL database. The data upload procedure registers in

the database, together with the data, also the information about the sender and the

reception date. The connection with the OPM graph is performed through tables

linking the rows in the database tables containing the data received from Member

States with the corresponding artifacts in the graph.

8.2 Querying OPM graphs

In order to access the information stored in an OPM graph, a set of queries were

made available to the users. The queries can be classified as: queries about entities

depending on other entities and queries about entities influencing other entities.

The query language grammar, described in the Extended Backus-Naur Form

(EBNF) notation, is defined as follows:

<query specification>

::= Select <entity> <relation name> <entity> <where clause>

<entity> ::= artifact | process | agent

<relation> ::= dependsOn | hasEffectOn

<where clause> ::= where <attribute> <operator> string

<attribute> ::= id | value

<operator> ::= =

The available queries are listed in the following with their translation into SQL

statements. It is made the assumption that the queries refer to a legal OPM account

view; thus, accounts are not considered in the exemplified SQL code.

– Select Artifact dependsOn Process where value = 'value'

The query selects the artifacts that satisfy the multi-step “was generated by”

relation with the process indicated in the second part of the statement.
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SELECT Artifact.value

FROM MultiStepWasGeneratedBy, Process, Artifact

WHERE MultiStepWasGeneratedBy.artifactId = Artifact.artifactId

AND MultiStepWasGeneratedBy.processId = Process.processId

AND Process.value = 'value'

– Select Artifact dependsOn Artifact where value = 'value'

The query selects the artifacts that satisfy the multi-step “was derived from”

relation with the artifact indicated in the second part of the statement.

SELECT Artifact.value FROM Artifact

WHERE Artifact.artifactId in (

SELECT MultiStepWasDerivedFrom.derivedArtifactId

FROM MultiStepWasDerivedFrom, Artifact

WHERE MultiStepWasDerivedFrom.sourceArtifactId =

Artifact.artifactId AND Artifact.value = 'value' )

– Select Artifact dependsOn Agent where value = 'value'

The query selects the artifacts that indirectly depend on the agent indicated

in the second part of the statement. Two SQL statement are exemplified; the

first one uses the view for the proposed multi-step edge between an artifact

and an agent.

SELECT Artifact.value

FROM Agent, Artifact, MultiStepArtifactWasControlledBy

WHERE MultiStepArtifactWasControlledBy.agentId = Agent.agentId

AND MultiStepArtifactWasControlledBy.artifactId =

Artifact.artifactId AND Agent.value = 'value'

SELECT Artifact.value

FROM Agent, Artifact, WasControlledBy, MultiStepWasGeneratedBy

WHERE WasControlledBy.agentId = Agent.agentId

AND MultiStepWasGeneratedBy.artifactId = Artifact.artifactId

AND MultiStepWasGeneratedBy.processId =

WasControlledBy.processId AND Agent.value = 'value'

– Select Process dependsOn Artifact where value = 'value'

The query selects the processes that satisfy the multi-step “used” relation with

the artifact indicated in the second part of the statement.
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SELECT Process.value

FROM MultiStepUsed, Process, Artifact

WHERE MultiStepUsed.artifactId = Artifact.artifactId

AND MultiStepUsed.processId = Process.processId

AND Artifact.value = 'value'

– Select Process dependsOn Process where value = 'value'

The query selects the processes that satisfy the multi-step “was triggered by”

relation with the process indicated in the second part of the statement.

SELECT Process.value FROM Process

WHERE Process.processId in (

SELECT MultiStepWasTriggeredBy.triggeredProcessId

FROM MultiStepWasTriggeredBy, Process

WHERE MultiStepWasTriggeredBy.sourceProcessId =

Process.processId AND Process.value = 'value' )

– Select Process dependsOn Agent where value = 'value'

The query selects the processes that satisfy the “was controlled by” relation

with the agent indicated in the second part of the statement.

SELECT Process.value

FROM WasControlledBy, Agent, Process

WHERE WasControlledBy.processId = Process.processId

AND WasControlledBy.agentId = Agent.agentId

AND Agent.value = 'value'

– Select Artifact hasEffectOn Process where value = 'value'

The query selects the artifacts that satisfy the inverse of the multi-step “used”

relation with the process indicated in the second part of the statement.

SELECT Artifact.value

FROM MultiStepUsed, Process, Artifact

WHERE MultiStepUsed.artifactId = Artifact.artifactId

AND MultiStepUsed.processId = Process.processId

AND Process.value = 'value'

– Select Artifact hasEffectOn Artifact where value = 'value'

The query selects the artifacts that satisfy the multi-step “was derived from”

relation with the artifact indicated in the second part of the statement.
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SELECT Artifact.value FROM Artifact

WHERE Artifact.artifactId in (

SELECT MultiStepWasDerivedFrom.sourceArtifactId

FROM MultiStepWasDerivedFrom, Artifact

WHERE MultiStepWasDerivedFrom.derivedArtifactId =

Artifact.artifactId AND Artifact.value = 'value' )

– Select Process hasEffectOn Artifact where value = 'value'

The query selects the processes that satisfy the inverse of the multi-step “was

generated by” relation with the artifact indicated in the second part of the

statement.

SELECT Process.value

FROM MultiStepWasGeneratedBy, Process, Artifact

WHERE MultiStepWasGeneratedBy.artifactId = Artifact.artifactId

AND MultiStepWasGeneratedBy.processId = Process.processId

AND Artifact.value = 'value'

– Select Process hasEffectOn Process where value = 'value'

The query selects the processes that satisfy the inverse of the multi-step “was

triggered by” relation with the process indicated in the second part of the

statement.

SELECT Process.value FROM Process

WHERE Process.processId in (

SELECT MultiStepWasTriggeredBy.sourceProcessId

FROM MultiStepWasTriggeredBy, Process

WHERE MultiStepWasTriggeredBy.triggeredProcessId =

Process.processId AND Process.value = 'value' )

– Select Agent hasEffectOn Process where value = 'value'

The query selects the agents that satisfy the inverse of the “was controlled by”

relation with the process indicated in the second part of the statement.

SELECT Agent.value

FROM WasControlledBy, Agent, Process

WHERE WasControlledBy.processId = Process.processId

AND WasControlledBy.agentId = Agent.agentId

AND Process.value = 'value'
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– Select Agent hasEffectOn Artifact where value = 'value'

The query selects the agents that influence the artifact indicated in the second

part of the statement. Two SQL statements are exemplified; in the first one

the MultiStepArtifactWasControlledBy view is used.

SELECT Agent.value

FROM Agent, Artifact, MultiStepArtifactWasControlledBy

WHERE MultiStepArtifactWasControlledBy.agentId = Agent.agentId

AND MultiStepArtifactWasControlledBy.artifactId =

Artifact.artifactId AND Artifact.value = 'value'

SELECT Agent.value

FROM Agent, Artifact, WasControlledBy, MultiStepWasGeneratedBy

WHERE WasControlledBy.agentId = Agent.agentId

AND MultiStepWasGeneratedBy.artifactId = Artifact.artifactId

AND MultiStepWasGeneratedBy.processId =

WasControlledBy.processId AND Artifact.value = 'value'

8.3 Related works

In the context of the Third Provenance Challenge1 and after it, some of the existing

workflow systems managing data provenance (such as Karma, Kepler, and Taverna)

were extended to support OPM or to map to OPM the model used in the system.

Furthermore, new works have been carried out in order to deal with OPM.

OPMProv [Lim et al., 2011] is a workflow provenance system based on a relational

database and compliant with OPM; in the OPMProv system, OPM graphs are stored

in a relational database with an approach similar to the one used in our work.

Zhao et al. [2011] use OPM as a global provenance model to describe provenance

information in a framework aiming at integrating heterogeneous data formats used

by proprietary software systems; in the referenced work, the authors describe the

implemented approach of reconstructing and querying the provenance graph from

distributed provenance repositories using a limited set of operations exposed by the

repository services.

In [Ding et al., 2010] the Semantic Web technologies have been exploited to

implement OPM reasoning: an OWL ontology has been proposed to capture the

concepts of OPM and valid inferences on the model itself.

1http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenanceChallenge
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The importance of data quality is generally understood and recognized, but it is

not always clear which is the best method to cope with the problem; moreover, the

available tools do not solve all the issues, leading often to the need to develop ad

hoc solutions.

In this work, through the application of data quality rules and with the adop-

tion of the data provenance concept, we tried to pursue the ambitious target of

recognizing if the quality level of a dataset is fit for the intended use of the data.

To deal with inconsistencies among data and evaluate the quality level of a

dataset, we proposed an approach based on rules expressed using the XML markup

language, and we developed a tool to evaluate these rules on a dataset. As data

quality rules, we used order dependencies and existence constraints as well as some

of the data constraints and dependencies already proposed in the data quality field.

The proposed approach allows a user to define different types of rules in the same

environment in a straightforward way. The developed tool manages a predefined set

of rule types, but it can be easily extended in order to work with other types of

rules. In order to express data quality rules in the tool, a user needs only to know

the database schema structure of its dataset and the types of rules managed by the

tool itself; he is not required to develop any software. The direct use of XML can

also be avoided through the templates developed to facilitate the interaction with

the tool.

Furthermore, we explored the field of discovering data quality rules from datasets.

New data dependencies, which can be used as data quality rules, have been re-

cently proposed in literature. For some of these dependencies there are not yet

well-established methods or available software tools to find them in a dataset; for

this reason, we implemented some algorithms for discovering the data dependencies

used in the tool.

The second main concept on which we based our work is the provenance of data.

In spite of the rich literature of the last years, data provenance is not yet a concept

normally used in data management activities. The existing systems in which the
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provenance of data is considered and traced are built for particular purposes and

limited contexts. Moreover, the interoperability among different systems is poor. In

this context, the proposal of the Open Provenance Model (OPM) is a positive step,

as the W3C proposal of the PROV-DM model is for the World Wide Web, but it is

far from enough.

In the case study context, to start to experiment with the data provenance

concept, we proposed the adoption of the OPM model in order to exchange data

provenance information among the bodies involved in the collection and use of the

data. A query language for querying OPM graphs stored in a relational database

was implemented; in addition, we provided an approach to design OPM graphs

together with a validation tool for the XML format of the graphs themselves. The

proposed approach is composed of a conceptual phase and a physical phase. In

the conceptual phase, concepts and their relationships are identified and mapped

into OPM elements; moreover, graph transformation hints are provided to be used

in order to obtain a legal OPM graph. Finally, the physical phase refers to the

serialization of the OPM graph into the corresponding XML structure with the

validation of the generated XML document.
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Data Quality rules: XML structure

This appendix contains the Document Type Definition and the XML Schema for

the XML structure used to specify the data quality rules as described in chapter 4.

Document Type Definition

<!DOCTYPE rules [

<!ELEMENT rules (rule_definition+)>

<!ELEMENT rule_definition (table_name+,

(rule_cr|rule_fd|rule_od|rule_dd|rule_ec|rule_cc))>

<!ELEMENT rule_cr (if, then)>

<!ELEMENT rule_fd (lhs, rhs, when?)>

<!ELEMENT rule_od (lhs, rhs, when?, partition_on?)>

<!ELEMENT rule_dd (lhs_dd, rhs_dd, when?, partition_on?)>

<!ELEMENT rule_ec ((column+|(lhs_ec, rhs_ec)), when?, join_on?)>

<!ELEMENT rule_cc (check, join_on?)>

<!ELEMENT if (condition|conditions)>

<!ELEMENT then (condition|conditions)>

<!ELEMENT when (condition|conditions)>

<!ELEMENT check (condition|conditions)>

<!ELEMENT join_on (column+)>

<!ELEMENT lhs (column_name+)>

<!ELEMENT rhs (column_name+)>

<!ELEMENT lhs_dd (distance_condition+)>

<!ELEMENT rhs_dd (distance_condition+)>

<!ELEMENT lhs_ec (column)>

<!ELEMENT rhs_ec (column|(table_name?, disj_attr+))>

<!ELEMENT partition_on (column_name+)>
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<!ELEMENT column (table_name?, column_name)>

<!ELEMENT disj_attr (column_name+)>

<!ELEMENT distance_condition (column_name,

comparison_operator, constant)>

<!ELEMENT conditions ((condition|conditions)+, boolean_operator)>

<!ELEMENT condition (lside, comparison_operator, rside)>

<!ELEMENT lside (column|arithmetic_computation)>

<!ELEMENT rside (constant|column|arithmetic_computation)>

<!ELEMENT arithmetic_computation ((constant|column|

arithmetic_computation)+, arithmetic_operator)>

<!ELEMENT table_name (#PCDATA)>

<!ELEMENT column_name (#PCDATA)>

<!ELEMENT comparison_operator (#PCDATA)>

<!ELEMENT boolean_operator (#PCDATA)>

<!ELEMENT arithmetic_operator (#PCDATA)>

<!ELEMENT constant (#PCDATA)>

<!ATTLIST rule_definition name CDATA #IMPLIED

type (conditional_rule|functional_dependency|

order_dependency|distance_dependency|

existence_constraint|check_constraint) #REQUIRED>

<!ATTLIST rule_od type (direct|inverse) #REQUIRED>

<!ATTLIST rule_ec type (ec_dep|ec_bidir|

ec_disj|ec_attr) #REQUIRED> ]>

XML Schema

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="rules">

<xs:complexType>

<xs:sequence>

<xs:element ref="rule_definition"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="rule_definition">

<xs:complexType>
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<xs:sequence>

<xs:element name="table_name" type="xs:string"

minOccurs="1" maxOccurs="unbounded"/>

<xs:choice>

<xs:element ref="rule_cr"/>

<xs:element ref="rule_fd"/>

<xs:element ref="rule_od"/>

<xs:element ref="rule_dd"/>

<xs:element ref="rule_ec"/>

<xs:element ref="rule_cc"/>

</xs:choice>

</xs:sequence>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="type" type="ruleType" use="required"/>

</xs:complexType>

</xs:element>

<xs:simpleType name="ruleType">

<xs:restriction base="xs:string">

<xs:enumeration value="conditional_rule"/>

<xs:enumeration value="functional_dependency"/>

<xs:enumeration value="order_dependency"/>

<xs:enumeration value="distance_dependency"/>

<xs:enumeration value="existence_constraint"/>

<xs:enumeration value="check_constraint"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="rule_cr">

<xs:complexType>

<xs:sequence>

<xs:element ref="if"/>

<xs:element ref="then"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="rule_fd">

<xs:complexType>

<xs:sequence>

<xs:element ref="lhs"/>
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<xs:element ref="rhs"/>

<xs:element ref="when" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="rule_od">

<xs:complexType>

<xs:sequence>

<xs:element ref="lhs"/>

<xs:element ref="rhs"/>

<xs:element ref="when" minOccurs="0" maxOccurs="1"/>

<xs:element ref="partition_on" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="type" type="ocType" use="required"/>

</xs:complexType>

</xs:element>

<xs:simpleType name="ocType">

<xs:restriction base="xs:string">

<xs:enumeration value="direct"/>

<xs:enumeration value="inverse"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="rule_dd">

<xs:complexType>

<xs:sequence>

<xs:element ref="lhs_dd"/>

<xs:element ref="rhs_dd"/>

<xs:element ref="when" minOccurs="0" maxOccurs="1"/>

<xs:element ref="partition_on" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="rule_ec">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref="column" minOccurs="1" maxOccurs="2"/>

<xs:sequence>
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<xs:element ref="lhs_ec"/>

<xs:element ref="rhs_ec"/>

</xs:sequence>

</xs:choice>

<xs:element ref="when" minOccurs="0" maxOccurs="1"/>

<xs:element ref="join_on" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

<xs:attribute name="type" type="ecType" use="required"/>

</xs:complexType>

</xs:element>

<xs:simpleType name="ecType">

<xs:restriction base="xs:string">

<xs:enumeration value="ec_dep"/>

<xs:enumeration value="ec_bidir"/>

<xs:enumeration value="ec_disj"/>

<xs:enumeration value="ec_attr"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="rule_cc">

<xs:complexType>

<xs:sequence>

<xs:element ref="check"/>

<xs:element ref="join_on" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="if">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref="condition"/>

<xs:element ref="conditions"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="then">

<xs:complexType>



Appendix A 119

<xs:sequence>

<xs:choice>

<xs:element ref="condition"/>

<xs:element ref="conditions"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="when">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref="condition"/>

<xs:element ref="conditions"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="check">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref="condition"/>

<xs:element ref="conditions"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="join_on">

<xs:complexType>

<xs:sequence>

<xs:element ref="column"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="lhs">

<xs:complexType>
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<xs:sequence>

<xs:element name="column_name" type="xs:string"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="rhs">

<xs:complexType>

<xs:sequence>

<xs:element name="column_name" type="xs:string"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="lhs_dd">

<xs:complexType>

<xs:sequence>

<xs:element name="distance_condition"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="rhs_dd">

<xs:complexType>

<xs:sequence>

<xs:element ref="distance_condition"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="lhs_ec">

<xs:complexType>

<xs:sequence>

<xs:element ref="column"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="rhs_ec">
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<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref="column"/>

<xs:sequence>

<xs:element name="table_name" type="xs:string"

minOccurs="0" maxOccurs="1"/>

<xs:element ref="disj_attr"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="partition_on">

<xs:complexType>

<xs:sequence>

<xs:element name="column_name" type="xs:string"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="column">

<xs:complexType>

<xs:sequence>

<xs:element name="table_name" type="xs:string"

minOccurs="0" maxOccurs="1"/>

<xs:element name="column_name" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="disj_attr">

<xs:complexType>

<xs:sequence>

<xs:element name="column_name" type="xs:string"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>
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</xs:element>

<xs:element name="distance_condition">

<xs:complexType>

<xs:sequence>

<xs:element name="column_name" type="xs:string"/>

<xs:element name="comparison_operator" type="xs:string"/>

<xs:element name="constant"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="conditions">

<xs:complexType>

<xs:sequence>

<xs:choice minOccurs="2" maxOccurs="2">

<xs:element ref="condition"/>

<xs:element ref="conditions"/>

</xs:choice>

<xs:element name="boolean_operator" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="condition">

<xs:complexType>

<xs:sequence>

<xs:element ref="lside"/>

<xs:element name="comparison_operator" type="xs:string"/>

<xs:element ref="rside"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="lside">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref="column"/>

<xs:element ref="arithmetic_computation"/>

</xs:choice>

</xs:sequence>
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</xs:complexType>

</xs:element>

<xs:element name="rside">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element name="constant" type="xs:string"/>

<xs:element ref="column"/>

<xs:element ref="arithmetic_computation"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="arithmetic_computation">

<xs:complexType>

<xs:sequence>

<xs:choice minOccurs="2" maxOccurs="2">

<xs:element name="constant" type="xs:string"/>

<xs:element ref="column"/>

<xs:element ref="arithmetic_computation"/>

</xs:choice>

<xs:element name="arithmetic_operator" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
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Schematron schema for OPM graphs

We used Schematron to validate the XML structure of the OPM graphs. In par-

ticular, we produced two versions of the Schematron schema considering the two

definitions of legal OPM graph provided in literature (see the introduction to OPM

in chapter 6). In the following, we show a unique Schematron schema containing all

the defined assertions with, when necessary, comments specifying the corresponding

legal definition.

In addition to Schematron assertions, the schema contains two XSLT functions

used (as explained in chapter 7) to verity the presence of cycles in the graph.

<?xml version="1.0" encoding="utf-8"?>

<iso:schema

xmlns="http://purl.oclc.org/dsdl/schematron"

xmlns:iso="http://purl.oclc.org/dsdl/schematron"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fct="localFunctions"

queryBinding="xslt2">

<iso:ns prefix="fct" uri="localFunctions"/>

<iso:title>Schematron schema for OPM graphs validation</iso:title>

<iso:pattern name="Nodes">

<iso:rule context="artifact">

<iso:assert test="@id=//dependencies/wasGeneratedBy/effect/@ref

or @id=//dependencies/used/cause/@ref

or @id=//dependencies/wasDerivedFrom/effect/@ref

or @id=//dependencies/wasDerivedFrom/cause/@ref">

An artifact is not connected to any process
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or any other artifact

</iso:assert>

</iso:rule>

<iso:rule context="process">

<iso:assert test="@id=//dependencies/used/effect/@ref

or @id=//dependencies/wasGeneratedBy/cause/@ref

or @id=//dependencies/wasTriggeredBy/effect/@ref

or @id=//dependencies/wasTriggeredBy/cause/@ref">

A process is not connected to any artifact

or any other process

</iso:assert>

</iso:rule>

<iso:rule context="dependencies">

<iso:assert test="count(distinct-values(//agent/@id)) =

count(distinct-values(wasControlledBy/cause/@ref))">

An agent is not connected to any process

</iso:assert>

</iso:rule>

</iso:pattern>

<iso:pattern name="Edges">

<iso:rule context="dependencies">

<!-- Assertion for the OPM version 1.1 -->

<iso:assert test="count(wasGeneratedBy) =

count(wasGeneratedBy[not(effect/@ref =

preceding-sibling::wasGeneratedBy/effect/@ref)])">

At most one wasGeneratedBy edge per artifact is allowed

</iso:assert>

<!-- Assertion for the "second" definiton of OPM legal graph -->

<iso:assert test="count(wasGeneratedBy[role]) =

count(wasGeneratedBy[role and not(effect/@ref =

preceding-sibling::wasGeneratedBy/effect/@ref)])">

At most one precise wasGeneratedBy edge

per artifact is allowed

</iso:assert>
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</iso:rule>

<iso:rule context="wasTriggeredBy">

<iso:assert test="not(effect/@ref=cause/@ref)">

The two processes connected by a wasTriggeredBy edge

have to be distinct

</iso:assert>

</iso:rule>

<iso:rule context="wasDerivedFrom">

<iso:assert test="not(effect/@ref=cause/@ref)">

The two artifacts connected by a wasDerivedFrom edge

have to be distinct

</iso:assert>

<!-- Assertion for the "second" definiton of OPM legal graph -->

<let name="a1ID" value="effect/@ref"/>

<let name="a2ID" value="cause/@ref"/>

<iso:assert test="role and

../wasGeneratedBy[role and effect/@ref=$a1ID]/cause/@ref =

../used[role and cause/@ref=$a2ID]/effect/@ref and

../used[cause/@ref=$a2ID]/role/@id=role/@id">

For every precise wasDerivedFrom edge connecting

artifact A1 and artifact A2, a wasGeneratedBy edge

connecting A1 with a process and a used edge

connecting the same process to A2 are necessary

</iso:assert>

</iso:rule>

</iso:pattern>

<iso:pattern name="Time">

<iso:rule context="wasControlledBy">

<let name="processID" value="effect/@ref"/>

<iso:assert test="(

(../wasGeneratedBy[cause/@ref=$processID]/time/@exactlyAt >

startTime/@exactlyAt and endTime/@exactlyAt >

../wasGeneratedBy[cause/@ref=$processID]/time/@exactlyAt)

or not(../wasGeneratedBy/cause/@ref=$processID) )
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and (

(../used[effect/@ref=$processID]/time/@exactlyAt >

startTime/@exactlyAt and endTime/@exactlyAt >

../used[effect/@ref=$processID]/time/@exactlyAt)

or not(../used/effect/@ref=$processID) )">

Timestamps assigned to the edges are not consistent

</iso:assert>

<iso:assert test="(endTime/@exactlyAt) > (startTime/@exactlyAt)">

Timestamps assigned to a wasControlledBy edge

are not consistent

</iso:assert>

</iso:rule>

<iso:rule context="wasGeneratedBy">

<let name="artifactID" value="effect/@ref"/>

<iso:assert test="../used[cause/@ref=$artifactID]/time/@exactlyAt

> time/@exactlyAt or not(../used/cause/@ref=$artifactID)">

Timestamps assigned to wasGeneratedBy and used

edges are not consistent

</iso:assert>

</iso:rule>

<iso:rule context="used">

<let name="artifactID" value="cause/@ref"/>

<iso:assert test="time/@exactlyAt >

../wasGeneratedBy[effect/@ref=$artifactID]/time/@exactlyAt

or not(../wasGeneratedBy/effect/@ref=$artifactID)">

Timestamps assigned to used and wasGeneratedBy

edges are not consistent

</iso:assert>

</iso:rule>

</iso:pattern>

<iso:pattern name="Cycles">

<iso:rule context="dependencies">

<iso:assert test="fct:checkCycleTest(wasDerivedFrom)">

For a single account, wasDerivedFrom cycles are not allowed
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</iso:assert>

</iso:rule>

</iso:pattern>

<xsl:function name="fct:checkCycleTest" as="xs:boolean">

<xsl:param name="wdfs" as="node()*"/>

<xsl:choose>

<xsl:when test="count($wdfs)>0">

<xsl:variable name="wdfe1">

<xsl:value-of select="$wdfs[position()=1]/effect/@ref"/>

</xsl:variable>

<xsl:variable name="wdfc1">

<xsl:value-of select="$wdfs[position()=1]/cause/@ref"/>

</xsl:variable>

<xsl:variable name="account">

<xsl:value-of select="$wdfs[position()=1]/account/@ref"/>

</xsl:variable>

<xsl:choose>

<xsl:when test="fct:checkCycle($wdfs,$wdfe1,

$wdfc1,$account,$wdfs)">

<xsl:value-of select="

fct:checkCycleTest($wdfs[position()>1])"/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="false()"/>

</xsl:otherwise>

</xsl:choose>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="true()"/>

</xsl:otherwise>

</xsl:choose>

</xsl:function>

<xsl:function name="fct:checkCycle" as="xs:boolean">

<xsl:param name="wdfs" as="node()*"/>

<xsl:param name="wdfe1" as="xs:string"/>

<xsl:param name="wdfc1" as="xs:string"/>
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<xsl:param name="account" as="xs:string"/>

<xsl:param name="wdfsbis" as="node()*"/>

<xsl:choose>

<xsl:when test="count($wdfs)>0">

<xsl:choose>

<xsl:when test="$wdfs[position()=1]/effect/@ref=$wdfc1 and

$wdfs[position()=1]/account/@ref=$account">

<xsl:choose>

<xsl:when test="$wdfs[position()=1]/cause/@ref=$wdfe1">

<xsl:value-of select="false()"/>

</xsl:when>

<xsl:otherwise>

<xsl:variable name="wdfid">

<xsl:value-of select="$wdfs[position()=1]/@id"/>

</xsl:variable>

<xsl:value-of select="

fct:checkCycle($wdfsbis[not(@id=$wdfid)],$wdfe1,

$wdfs[position()=1]/cause/@ref,$account,$wdfsbis)"/>

</xsl:otherwise>

</xsl:choose>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="

fct:checkCycle($wdfs[position()>1],

$wdfe1,$wdfc1,$account,$wdfsbis)"/>

</xsl:otherwise>

</xsl:choose>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="true()"/>

</xsl:otherwise>

</xsl:choose>

</xsl:function>

</iso:schema>
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Information Product Map

The Information Product Map (IP-MAP) graphical model is centered on the con-

cept of information product, which is a collection of data element instances that

meet the specified requirements of a data consumer. An IP-MAP is aimed at be-

ing a systematic representation of the details associated with the creation of such a

product.

An information product (IP) is produced by means of processing activities and

data quality checks on raw data and semi-processed information (or component

data). Raw data (RD) are defined as data that come from outside the boundaries of

the IP-MAP. Component data (CD) are defined as a set of temporary semi-processed

information that might be generated within the IP-MAP and used in creating the

final IP.

The following eight construct blocks can be used to build an IP-MAP:

– Source (input data) block: it represents the source of each raw data that must

be available in order to produce the IP.

– Customer (output) block: it is used to represent the consumers of the IP.

– Data Quality (evaluation) block: associated with this block there is a list of the

data quality checks that are performed on the specified component data items;

this block has two possible output streams, correct and incorrect, depending

on the result of the evaluation of the checks.

– Processing block:

1. Primary purpose - it is used to represent any manipulation or calculation

involving some or all of the raw input or component data items required

to ultimately produce the IP.

2. Secondary purpose - it is used as a data correction block: when errors

are identified in a set of data items that enter this block, some corrective
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Construct name Construct symbol

Source (input data)
Block

Customer (output) 
Block

Data Quality
(evaluation) Block

Processing
Block

Decision 
Block

Data Storage 
Block

Organizational
Boundary Block

Information System
Boundary Block

Table 1: IP-MAP construct symbols

action is required; this block represents a process that is not part of the

standard processing sequence, but is utilized under special circumstances.

– Decision block: when it is necessary to direct the data items to a different set of

blocks for further processing, a decision block captures the different conditions

to be evaluated and the corresponding procedures for handling the incoming

data items based on the evaluation.

– Data Storage block: it is used to represent data items (raw and component

data), stored in storage files or databases, that wait for further processing or

are captured as part of the information inventory in the organization.

– Organizational Boundary block: it is used when a data unit (raw or component

data) moves across departments or across organizations.

– Information System Boundary block: it is used to reflect the changes to a data

unit (raw or component data) as it moves from one information system (paper

or computerized) to another type of information system (paper or comput-
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erized). The information system boundary block is used to specify the two

information systems involved.

Each construct block is identified by a unique name and is further described by a set

of attributes (i.e., metadata). Table 1 lists the graphical symbols assigned to each

construct block.

The different types of data involved in every step of the process can be differ-

entiated in the diagram by means of labels (i.e., IP, RD, and CD respectively for

information products, row data, and component data) on the arrows connecting each

pairs of construct blocks.
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