22 research outputs found

    Effective Proactive and Reactive Defense Strategies against Malicious Attacks in a Virtualized Honeynet

    Get PDF
    Virtualization plays an important role in the recent trend of cloud computing. It allows the administrator to manage and allocate hardware resources flexibly. However, it also causes some security issues. This is a critical problem for service providers, who simultaneously strive to defend against malicious attackers while providing legitimate users with high quality service. In this paper, the attack-defense scenario is formulated as a mathematical model where the defender applies both proactive and reactive defense mechanisms against attackers with different attack strategies. In order to simulate real-world conditions, the attackers are assumed to have incomplete information and imperfect knowledge of the target network. This raises the difficulty of solving the model greatly, by turning the problem nondeterministic. After examining the experiment results, effective proactive and reactive defense strategies are proposed. This paper finds that a proactive defense strategy is suitable for dealing with aggressive attackers under “winner takes all” circumstances, while a reactive defense strategy works better in defending against less aggressive attackers under “fight to win or die” circumstances

    Proactive cybersecurity tailoring through deception techniques

    Get PDF
    Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Informática e de ComputadoresUma abordagem proativa à cibersegurança pode complementar uma postura reativa ajudando as empresas a lidar com incidentes de segurança em fases iniciais. As organizações podem proteger-se ativamente contra a assimetria inerente à guerra cibernética através do uso de técnicas proativas, como por exemplo a ciber deception. A implantação intencional de artefactos enganosos para construir uma infraestrutura que permite a investigação em tempo real dos padrões e abordagens de um atacante sem comprometer a rede principal da organização é o propósito da deception cibernética. Esta metodologia pode revelar vulnerabilidades por descobrir, conhecidas como vulnerabilidades de dia-zero, sem interferir com as atividades de rotina da organização. Além disso, permite às empresas a extração de informações vitais sobre o atacante que, de outra forma, seriam difíceis de adquirir. No entanto, colocar estes conceitos em prática em circunstâncias reais constitui problemas de grande ordem. Este estudo propõe uma arquitetura para um sistema informático de deception, que culmina numa implementação que implanta e adapta dinamicamente uma rede enganosa através do uso de técnicas de redes definidas por software e de virtualização de rede. A rede ilusora é uma rede de ativos virtuais com uma topologia e especificações pré-planeadas, coincidentes com uma estratégia de deception. O sistema pode rastrear e avaliar a atividade do atacante através da monitorização contínua dos artefactos da rede. O refinamento em tempo real do plano de deception pode exigir alterações na topologia e nos artefactos da rede, possíveis devido às capacidades de modificação dinâmica das redes definidas por software. As organizações podem maximizar as suas capacidades de deception ao combinar estes processos com componentes avançados de deteção e classificação de ataques informáticos. A eficácia da solução proposta é avaliada usando vários casos de estudo que demonstram a sua utilidade.A proactive approach to cybersecurity can supplement a reactive posture by helping businesses to handle security incidents in the early phases of an attack. Organizations can actively protect against the inherent asymmetry of cyber warfare by using proactive techniques such as cyber deception. The intentional deployment of misleading artifacts to construct an infrastructure that allows real-time investigation of an attacker's patterns and approaches without compromising the organization's principal network is what cyber deception entails. This method can reveal previously undiscovered vulnerabilities, referred to as zero-day vulnerabilities, without interfering with routine corporate activities. Furthermore, it enables enterprises to collect vital information about the attacker that would otherwise be difficult to access. However, putting such concepts into practice in real-world circumstances involves major problems. This study proposes an architecture for a deceptive system, culminating in an implementation that deploys and dynamically customizes a deception grid using Software-Defined Networking (SDN) and network virtualization techniques. The deception grid is a network of virtual assets with a topology and specifications that are pre-planned to coincide with a deception strategy. The system can trace and evaluate the attacker's activity by continuously monitoring the artifacts within the deception grid. Real-time refinement of the deception plan may necessitate changes to the grid's topology and artifacts, which can be assisted by software-defined networking's dynamic modification capabilities. Organizations can maximize their deception capabilities by merging these processes with advanced cyber-attack detection and classification components. The effectiveness of the given solution is assessed using numerous use cases that demonstrate its utility.N/

    A Survey of Network Requirements for Enabling Effective Cyber Deception

    Full text link
    In the evolving landscape of cybersecurity, the utilization of cyber deception has gained prominence as a proactive defense strategy against sophisticated attacks. This paper presents a comprehensive survey that investigates the crucial network requirements essential for the successful implementation of effective cyber deception techniques. With a focus on diverse network architectures and topologies, we delve into the intricate relationship between network characteristics and the deployment of deception mechanisms. This survey provides an in-depth analysis of prevailing cyber deception frameworks, highlighting their strengths and limitations in meeting the requirements for optimal efficacy. By synthesizing insights from both theoretical and practical perspectives, we contribute to a comprehensive understanding of the network prerequisites crucial for enabling robust and adaptable cyber deception strategies

    Survivability analogy for cloud computing

    Get PDF
    As cloud computing has become the most popular computing platform, and cloud-based applications a commonplace, the methods and mechanisms used to ensure their survivability is increasingly becoming paramount. One of the prevalent trends in recent times is a turn to nature for inspiration in developing and supporting highly survivable environments. This paper aims to address the problems of survivability in cloud environments through inspiration from nature. In particular, the community metaphor in nature's predator-prey systems where autonomous individuals' local decisions focus on ensuring the global survival of the community. Thus, we develop analogies for survivability in cloud computing based on a range of mechanisms which we view as key determinants of prey's survival against predation. For this purpose we investigate some predator-prey systems that will form the basis for our analogical designs. Furthermore, due to a lack of a standardized definition of survivability, we propose a unified definition for survivability, which emphasizes as imperative, a high level of proactiveness to thwart black swan events, as well as high capacity to respond to insecurity in a timely and appropriate manner, inspired by prey's avoidance and anti-predation approaches. © 2017 IEEE

    Mecanismos dinâmicos de segurança para redes softwarizadas e virtualizadas

    Get PDF
    The relationship between attackers and defenders has traditionally been asymmetric, with attackers having time as an upper hand to devise an exploit that compromises the defender. The push towards the Cloudification of the world makes matters more challenging, as it lowers the cost of an attack, with a de facto standardization on a set of protocols. The discovery of a vulnerability now has a broader impact on various verticals (business use cases), while previously, some were in a segregated protocol stack requiring independent vulnerability research. Furthermore, defining a perimeter within a cloudified system is non-trivial, whereas before, the dedicated equipment already created a perimeter. This proposal takes the newer technologies of network softwarization and virtualization, both Cloud-enablers, to create new dynamic security mechanisms that address this asymmetric relationship using novel Moving Target Defense (MTD) approaches. The effective use of the exploration space, combined with the reconfiguration capabilities of frameworks like Network Function Virtualization (NFV) and Management and Orchestration (MANO), should allow for adjusting defense levels dynamically to achieve the required security as defined by the currently acceptable risk. The optimization tasks and integration tasks of this thesis explore these concepts. Furthermore, the proposed novel mechanisms were evaluated in real-world use cases, such as 5G networks or other Network Slicing enabled infrastructures.A relação entre atacantes e defensores tem sido tradicionalmente assimétrica, com os atacantes a terem o tempo como vantagem para conceberem uma exploração que comprometa o defensor. O impulso para a Cloudificação do mundo torna a situação mais desafiante, pois reduz o custo de um ataque, com uma padronização de facto sobre um conjunto de protocolos. A descoberta de uma vulnerabilidade tem agora um impacto mais amplo em várias verticais (casos de uso empresarial), enquanto anteriormente, alguns estavam numa pilha de protocolos segregados que exigiam uma investigação independente das suas vulnerabilidades. Além disso, a definição de um perímetro dentro de um sistema Cloud não é trivial, enquanto antes, o equipamento dedicado já criava um perímetro. Esta proposta toma as mais recentes tecnologias de softwarização e virtualização da rede, ambas facilitadoras da Cloud, para criar novos mecanismos dinâmicos de segurança que incidem sobre esta relação assimétrica utilizando novas abordagens de Moving Target Defense (MTD). A utilização eficaz do espaço de exploração, combinada com as capacidades de reconfiguração de frameworks como Network Function Virtualization (NFV) e Management and Orchestration (MANO), deverá permitir ajustar dinamicamente os níveis de defesa para alcançar a segurança necessária, tal como definida pelo risco actualmente aceitável. As tarefas de optimização e de integração desta tese exploram estes conceitos. Além disso, os novos mecanismos propostos foram avaliados em casos de utilização no mundo real, tais como redes 5G ou outras infraestruturas de Network Slicing.Programa Doutoral em Engenharia Informátic

    To Deceive or not Deceive: Unveiling The Adoption Determinants Of Defensive Cyber Deception in Norwegian Organizations

    Get PDF
    Due to the prevailing threat landscape in Norway, it is imperative for organizations to safe- guard their infrastructures against cyber threats. One of the technologies that is advan- tageous against these threats is defensive cyber deception, which is an approach in cyber security that aims to be proactive, to interact with the attackers, trick them, deceive them and use this to the defenders advantage. This type of technology can help organizations defend against sophisticated threat actors that are able to avoid more traditional defensive mechanisms, such as Intrusion Detection Systems (IDS) or Intrusion Prevention Systems (IPS). In order to aid the adoption of defensive cyber deception in Norway, we asked the question: "What affects the adoption of defensive cyber deception in organizations in Nor- way?". To answer this question, we utilized the Technology, Organization, and Environment (TOE) Framework to identity what factors affect an organization’s adoption of defensive cyber deception. Through our use of the framework, we identified eighteen different factors which affect an organization’s adoption of defensive cyber deception. These factors are the product of the empirical data analysis from eight different semi-structured interview with individuals from six different organizations in Norway. The main theoretical implications of our research is the introduction of a TOE model for defensive cyber deception, focusing specifically on organizations in Norway as well as contributing with a maturity estimate model for defensive cyber deception. For the practical implications of our research, we have identified seven different benefits that defensive cyber deception provides. We are also con- tributing to raising the awareness of defensive cyber deception in Norwegian research and we hope that our TOE model can aid organizations that are considering adopting the tech- nology. We hope that these implications and contributions can act as a spark for both the adoption of defensive cyber deception in organizations as well as the start of a new wave for the cyber security researchers within Norway. Keywords: Cyber Security, Defensive Cyber Deception, TOE Framework, Adoptio

    Watchkeeper

    Get PDF
    The SAFE Port Act of 2006 designated the Coast Guard as the lead federal agency tasked with building Interagency Operations Centers in critical U.S. ports. A critical component of the IOC initiative is an Information Management System (IMS) to provide improved means for information sharing, and coordination among federal, state, local, and public sector stakeholders related to maritime safety and security in critical U.S. ports. The Coast Guard WatchKeeper project is a proposed IMS being designed to address the information sharing and information management challenges faced by these agencies. The WatchKeeper development program has faced challenges in delivering capability. Initial capability was to be delivered in 2009. This did not happen. Up to today, WatchKeeper has not delivered any new capabilities. Several development practices may provide advantages to the development process-ensuring value adding capabilities, minimizing project risk, and ensuring Coast Guard leadership can understand how WatchKeeper capabilities support Coast Guard core business process. This thesis describes these development practices, and proposes an architectural consideration to provide focus to future WatchKeeper products. This thesis concludes with considerations for further developing WatchKeeper, and recommendations for moving forward with development.http://archive.org/details/watchkeeper109455405US Coast Guard (USCG) authorApproved for public release; distribution is unlimited

    Mitigating Stealthy Link Flooding DDoS Attacks Using SDN-Based Moving Target Defense

    Get PDF
    With the increasing diversity and complication of Distributed Denial-of-Service (DDoS) attacks, it has become extremely challenging to design a fully protected network. For instance, recently, a new type of attack called Stealthy Link Flooding Attack (SLFA) has been shown to cause critical network disconnection problems, where the attacker targets the communication links in the surrounding area of a server. The existing defense mechanisms for this type of attack are based on the detection of some unusual traffic patterns; however, this might be too late as some severe damage might already be done. These mechanisms also do not consider countermeasures during the reconnaissance phase of these attacks. Over the last few years, moving target defense (MTD) has received increasing attention from the research community. The idea is based on frequently changing the network configurations to make it much more difficult for the attackers to attack the network. In this dissertation, we investigate several novel frameworks based on MTD to defend against contemporary DDoS attacks. Specifically, we first introduce MTD against the data phase of SLFA, where the bots are sending data packets to target links. In this framework, we mitigate the traffic if the bandwidth of communication links exceeds the given threshold, and experimentally show that our method significantly alleviates the congestion. As a second work, we propose a framework that considers the reconnaissance phase of SLFA, where the attacker strives to discover critical communication links. We create virtual networks to deceive the attacker and provide forensic features. In our third work, we consider the legitimate network reconnaissance requests while keeping the attacker confused. To this end, we integrate cloud technologies as overlay networks to our system. We demonstrate that the developed mechanism preserves the security of the network information with negligible delays. Finally, we address the problem of identifying and potentially engaging with the attacker. We model the interaction between attackers and defenders into a game and derive a defense mechanism based on the equilibria of the game. We show that game-based mechanisms could provide similar protection against SLFAs like the extensive periodic MTD solution with significantly reduced overhead. The frameworks in this dissertation were verified with extensive experiments as well as with the theoretical analysis. The research in this dissertation has yielded several novel defense mechanisms that provide comprehensive protection against SLFA. Besides, we have shown that they can be integrated conveniently and efficiently to the current network infrastructure

    To Deceive or not Deceive: Unveiling The Adoption Determinants Of Defensive Cyber Deception in Norwegian Organizations

    Get PDF
    Due to the prevailing threat landscape in Norway, it is imperative for organizations to safeguard their infrastructures against cyber threats. One of the technologies that is advantageous against these threats is defensive cyber deception, which is an approach in cyber security that aims to be proactive, to interact with the attackers, trick them, deceive them and use this to the defenders advantage. This type of technology can help organizations defend against sophisticated threat actors that are able to avoid more traditional defensive mechanisms, such as Intrusion Detection Systems (IDS) or Intrusion Prevention Systems (IPS). In order to aid the adoption of defensive cyber deception in Norway, we asked the question: "What affects the adoption of defensive cyber deception in organizations in Norway?". To answer this question, we utilized the Technology, Organization, and Environment (TOE) Framework to identity what factors affect an organization's adoption of defensive cyber deception. Through our use of the framework, we identified eighteen different factors which affect an organization's adoption of defensive cyber deception. These factors are the product of the empirical data analysis from eight different semi-structured interview with individuals from six different organizations in Norway. The main theoretical implications of our research is the introduction of a TOE model for defensive cyber deception, focusing specifically on organizations in Norway as well as contributing with a maturity estimate model for defensive cyber deception. For the practical implications of our research, we have identified seven different benefits that defensive cyber deception provides. We are also contributing to raising the awareness of defensive cyber deception in Norwegian research and we hope that our TOE model can aid organizations that are considering adopting the technology. We hope that these implications and contributions can act as a spark for both the adoption of defensive cyber deception in organizations as well as the start of a new wave for the cyber security researchers within Norway. Keywords: Cyber Security, Defensive Cyber Deception, TOE Framework, Adoptio

    A framework for Operational Security Metrics Development for industrial control environment

    Get PDF
    Security metrics are very crucial towards providing insights when measuring security states and susceptibilities in industrial operational environments. Obtaining practical security metrics depend on effective security metrics development approaches. To be effective, a security metrics development framework should be scope-definitive, objective-oriented, reliable, simple, adaptable, and repeatable (SORSAR). A framework for Operational Security Metrics Development (OSMD) for industry control environments is presented, which combines concepts and characteristics from existing approaches. It also adds the new characteristic of adaptability. The OSMD framework is broken down into three phases of: target definition, objective definition, and metrics synthesis. A case study scenario is used to demonstrate an instance of how to implement and apply the proposed framework to demonstrate its usability and workability. Expert elicitation has also be used to consolidate the validity of the proposed framework. Both validation approaches have helped to show that the proposed framework can help create effective and efficient ICS-centric security metrics taxonomy that can be used to evaluate capabilities or vulnerabilities. The understanding from this can help enhance security assurance within industrial operational environments
    corecore