323 research outputs found

    Effective Piecewise CNN with attention mechanism for distant supervision on relation extraction task

    Get PDF
    Relation Extraction is an important sub-task in the field of information extraction. Its goal is to identify entities from text and extract semantic relationships between entities. However, the current Relationship Extraction task based on deep learning methods generally have practical problems such as insufficient amount of manually labeled data, so training under weak supervision has become a big challenge. Distant Supervision is a novel idea that can automatically annotate a large number of unlabeled data based on a small amount of labeled data. Based on this idea, this paper proposes a method combining the Piecewise Convolutional Neural Networks and Attention mechanism for automatically annotating the data of Relation Extraction task. The experiments proved that the proposed method achieved the highest precision is 76.24% on NYT-FB (New York Times-Freebase) dataset (top 100 relation categories). The results show that the proposed method performed better than CNN-based models in most cases

    Cross-relation Cross-bag Attention for Distantly-supervised Relation Extraction

    Full text link
    Distant supervision leverages knowledge bases to automatically label instances, thus allowing us to train relation extractor without human annotations. However, the generated training data typically contain massive noise, and may result in poor performances with the vanilla supervised learning. In this paper, we propose to conduct multi-instance learning with a novel Cross-relation Cross-bag Selective Attention (C2^2SA), which leads to noise-robust training for distant supervised relation extractor. Specifically, we employ the sentence-level selective attention to reduce the effect of noisy or mismatched sentences, while the correlation among relations were captured to improve the quality of attention weights. Moreover, instead of treating all entity-pairs equally, we try to pay more attention to entity-pairs with a higher quality. Similarly, we adopt the selective attention mechanism to achieve this goal. Experiments with two types of relation extractor demonstrate the superiority of the proposed approach over the state-of-the-art, while further ablation studies verify our intuitions and demonstrate the effectiveness of our proposed two techniques.Comment: AAAI 201

    Attention-Based Capsule Networks with Dynamic Routing for Relation Extraction

    Full text link
    A capsule is a group of neurons, whose activity vector represents the instantiation parameters of a specific type of entity. In this paper, we explore the capsule networks used for relation extraction in a multi-instance multi-label learning framework and propose a novel neural approach based on capsule networks with attention mechanisms. We evaluate our method with different benchmarks, and it is demonstrated that our method improves the precision of the predicted relations. Particularly, we show that capsule networks improve multiple entity pairs relation extraction.Comment: To be published in EMNLP 201

    Looking Beyond Label Noise: Shifted Label Distribution Matters in Distantly Supervised Relation Extraction

    Full text link
    In recent years there is a surge of interest in applying distant supervision (DS) to automatically generate training data for relation extraction (RE). In this paper, we study the problem what limits the performance of DS-trained neural models, conduct thorough analyses, and identify a factor that can influence the performance greatly, shifted label distribution. Specifically, we found this problem commonly exists in real-world DS datasets, and without special handing, typical DS-RE models cannot automatically adapt to this shift, thus achieving deteriorated performance. To further validate our intuition, we develop a simple yet effective adaptation method for DS-trained models, bias adjustment, which updates models learned over the source domain (i.e., DS training set) with a label distribution estimated on the target domain (i.e., test set). Experiments demonstrate that bias adjustment achieves consistent performance gains on DS-trained models, especially on neural models, with an up to 23% relative F1 improvement, which verifies our assumptions. Our code and data can be found at \url{https://github.com/INK-USC/shifted-label-distribution}.Comment: 13 pages: 10 pages paper, 3 pages appendix. Appears at EMNLP 201

    Improving Neural Relation Extraction with Implicit Mutual Relations

    Full text link
    Relation extraction (RE) aims at extracting the relation between two entities from the text corpora. It is a crucial task for Knowledge Graph (KG) construction. Most existing methods predict the relation between an entity pair by learning the relation from the training sentences, which contain the targeted entity pair. In contrast to existing distant supervision approaches that suffer from insufficient training corpora to extract relations, our proposal of mining implicit mutual relation from the massive unlabeled corpora transfers the semantic information of entity pairs into the RE model, which is more expressive and semantically plausible. After constructing an entity proximity graph based on the implicit mutual relations, we preserve the semantic relations of entity pairs via embedding each vertex of the graph into a low-dimensional space. As a result, we can easily and flexibly integrate the implicit mutual relations and other entity information, such as entity types, into the existing RE methods. Our experimental results on a New York Times and another Google Distant Supervision datasets suggest that our proposed neural RE framework provides a promising improvement for the RE task, and significantly outperforms the state-of-the-art methods. Moreover, the component for mining implicit mutual relations is so flexible that can help to improve the performance of both CNN-based and RNN-based RE models significant.Comment: 12 page
    • …
    corecore