48 research outputs found

    Survey on the state-of-the-art in device-to-device communication: A resource allocation perspective

    Get PDF
    Device to Device (D2D) communication takes advantage of the proximity between the communicating devices in order to achieve efficient resource utilization, improved throughput and energy efficiency, simultaneous serviceability and reduced latency. One of the main characteristics of D2D communication is reuse of the frequency resource in order to improve spectral efficiency of the system. Nevertheless, frequency reuse introduces significantly high interference levels thus necessitating efficient resource allocation algorithms that can enable simultaneous communication sessions through effective channel and/or power allocation. This survey paper presents a comprehensive investigation of the state-of-the-art resource allocation algorithms in D2D communication underlaying cellular networks. The surveyed algorithms are evaluated based on heterogeneous parameters which constitute the elementary features of a resource allocation algorithm in D2D paradigm. Additionally, in order to familiarize the readers with the basic design of the surveyed resource allocation algorithms, brief description of the mode of operation of each algorithm is presented. The surveyed algorithms are divided into four categories based on their technical doctrine i.e., conventional optimization based, Non-Orthogonal-MultipleAccess (NOMA) based, game theory based and machine learning based techniques. Towards the end, several open challenges are remarked as the future research directions in resource allocation for D2D communication

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Interference cancellation and Resource Allocation approaches for Device-to-Device Communications

    Get PDF
    Network assisted Device-to-Device (D2D) communication as an underlay to cellular spectrum has attracted much attention in mobile network standards for local area connectivity as a means to improve the cellular spectrum utilization and to reduce the energy consumption of User Equipments (UEs). The D2D communication uses resources of the underlying mobile network which results in different interference scenarios. These include interference from cellular to D2D link, D2D to cellular link and interference among D2D links when multiple D2D links share common resources. In this thesis, an orthogonal precoding interference cancellation method is initially presented to reduce the cellular to D2D and D2D to cellular interferences when the cellular channel resources are being shared by a single D2D link. Three different scenarios have been considered when establishing a D2D communication along with a Base Station-to-UE communication. The proposed method is analytically evaluated in comparison with the conventional precoding matrix allocation method in terms of ergodic capacity. This method is then extended for a cluster based multi-link D2D scenario where interference between D2D pairs also exists in addition to the other two interference scenarios. In this work, cluster denotes a group of devices locally communicating through multi-link D2D communications sharing the same radio resources of the Cluster Head. Performance of the proposed method is evaluated and compared for different resource sharing modes. The analyses illustrate the importance of cluster head in each cluster to save the battery life of devices in that cluster. The outage probability is considered as a performance evaluation matrix for guaranteeing QoS constrain of communication links. Hence, the mathematical expressions for outage probability of the proposed method for single-link and multi-link D2D communications are presented and compared with an existing interference cancellation technique. To execute the cluster based interference cancellation approach, a three-step resource allocation scheme is then proposed. It first performs a mode selection procedure to choose the transmission mode of each UEs. Then a clustering scheme is developed to group the links that can share a common resource to improve the spectral efficiency. For the selection of suitable cellular UEs for each cluster whose resource can be shared, a cluster head selection algorithm is also developed. Maximal residual energy and minimal transmit power have been considered as parameters for the cluster head selection scheme. Finally, the expression for maximum number of links that the radio resource of shared UE can support is analytically derived. The performance of the proposed scheme is evaluated using a WINNER II A1 indoor office model. The performance of D2D communication practically gets limited due to large distance and/or poor channel conditions between the D2D transmitter and receiver. To overcome these issues, a relay-assisted D2D communication is introduced in this thesis where a device relaying is an additional transmission mode along with the existing cellular and D2D transmission modes. A transmission mode assignment algorithm based on the Hungarian algorithm is then proposed to improve the overall system throughput. The proposed algorithm tries to solve two problems: a suitable transmission mode selection for each scheduled transmissions and a device selection for relaying communication between user equipments in the relay transmission mode. Simulation results showed that our proposed algorithm improves the system performance in terms of the overall system throughput and D2D data rate in comparison with traditional D2D communication schemes

    Advanced Technologies for Device-to-device Communications Underlaying Cellular Networks

    Get PDF
    The past few years have seen a major change in cellular networks, as explosive growth in data demands requires more and more network capacity and backhaul capability. New wireless technologies have been proposed to tackle these challenges. One of the emerging technologies is device-to-device (D2D) communications. It enables two cellular user equip- ment (UEs) in proximity to communicate with each other directly reusing cellular radio resources. In this case, D2D is able to of oad data traf c from central base stations (BSs) and signi cantly improve the spectrum ef ciency of a cellular network, and thus is one of the key technologies for the next generation cellular systems. Radio resource management (RRM) for D2D communications and how to effectively exploit the potential bene ts of D2D are two paramount challenges to D2D communications underlaying cellular networks. In this thesis, we focus on four problems related to these two challenges. In Chapter 2, we utilise the mixed integer non-linear programming (MINLP) to model and solve the RRM optimisation problems for D2D communications. Firstly we consider the RRM optimisation problem for D2D communications underlaying the single carrier frequency division multiple access (SC-FDMA) system and devise a heuristic sub- optimal solution to it. Then we propose an optimised RRM mechanism for multi-hop D2D communications with network coding (NC). NC has been proven as an ef cient technique to improve the throughput of ad-hoc networks and thus we apply it to multi-hop D2D communications. We devise an optimal solution to the RRM optimisation problem for multi-hop D2D communications with NC. In Chapter 3, we investigate how the location of the D2D transmitter in a cell may affect the RRM mechanism and the performance of D2D communications. We propose two optimised location-based RRM mechanisms for D2D, which maximise the throughput and the energy ef ciency of D2D, respectively. We show that, by considering the location information of the D2D transmitter, the MINLP problem of RRM for D2D communications can be transformed into a convex optimisation problem, which can be ef ciently solved by the method of Lagrangian multipliers. In Chapter 4, we propose a D2D-based P2P le sharing system, which is called Iunius. The Iunius system features: 1) a wireless P2P protocol based on Bittorrent protocol in the application layer; 2) a simple centralised routing mechanism for multi-hop D2D communications; 3) an interference cancellation technique for conventional cellular (CC) uplink communications; and 4) a radio resource management scheme to mitigate the interference between CC and D2D communications that share the cellular uplink radio resources while maximising the throughput of D2D communications. We show that with the properly designed application layer protocol and the optimised RRM for D2D communications, Iunius can signi cantly improve the quality of experience (QoE) of users and of oad local traf c from the base station. In Chapter 5, we combine LTE-unlicensed with D2D communications. We utilise LTE-unlicensed to enable the operation of D2D in unlicensed bands. We show that not only can this improve the throughput of D2D communications, but also allow D2D to work in the cell central area, which normally regarded as a “forbidden area” for D2D in existing works. We achieve these results mainly through numerical optimisation and simulations. We utilise a wide range of numerical optimisation theories in our works. Instead of utilising the general numerical optimisation algorithms to solve the optimisation problems, we modify them to be suitable for the speci c problems, thereby reducing the computational complexity. Finally, we evaluate our proposed algorithms and systems through sophisticated numer- ical simulations. We have developed a complete system-level simulation framework for D2D communications and we open-source it in Github: https://github.com/mathwuyue/py- wireless-sys-sim

    LTE 기반 기기간 통신 성능 향상 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 최성현.Recently, Device-to-Device (D2D) communication has attracted much attention as an emerging solution to cope with heavy cellular traffic caused by the proliferation of mobile devices such as smartphones and tablet PCs along with the increased demands for high data rate services. D2D communication is a promising technique which is introduced to one of the technology in Fifth Generation (5G) mobile network. In this scenario, allowing User Equipments (UEs) to reuse cellular resources can boost up the network performance in terms of the system capacity. In addition, reduced number of hops and shorter communication distance via direct communication between proximity UEs implies reduced energy consumption and communication delay. Moreover, D2D communications can help offload cellular traffic and avoid congestion in cellular network. This dissertation dealt with various aspects of problems under D2D network. For performance enhancement, various schemes and algorithms for D2D discovery and communication are proposed and evaluated via simulation. First of all, we investigate the interference problem occurring during D2D discovery. Every D2D-UE (D-UE) chooses the discovery resource randomly. Therefore, if the same resource is selected by more than one D-UE, mutual interference by collision is inevitable. Moreover, the collided D-UEs can not recognize the collision event in distributed D2D network. To reduce such mutual interference, interference mitigation technique is necessary. This study proposes two schemes to improve the discovery performance by alleviating the mutual interference. Since the proposed schemes are considered to operate in distributed manner, additional signaling or resources are not needed. In addition, performance evaluation of the proposed schemes and algorithm are conducted by incorporating in recent specification. Secondly, this study proposes the D2D discovery and link setup protocol model working in an LTE network. In addition, propose discovery synchronization, beacon resource and energy efficient RRC IDLE state discovery. These proposed model and discovery design in LTE-based is the first study in academia. Even though, the demand for D2D communication has increased, energy consumption is a growing concern as well. A device has to support both cellular and D2D communication, meaning that additional energy is required. Due to the energy concerns, we comparatively analyze the performance of the D2D discovery and link setup in RRC CONNECTED and RRC IDLE states. The performance analysis is conducted by utilizing the real measurement results with commercialized LTE smartphones. Lastly, we design a spatial reuse scheme which is well-known as one of the advantages in proximity D2D communication. The spatial reuse scheme is allowed to reuse one resource by sharing multiple transmitters. However, sharing the spectrum is carefully allowed due to the generating interference mutually. Especially, when two (or more than) devices reuse in proximity. This study investigate the spatial reuse problem under D2D multicast transmission and solve it with distributed manner. Moreover, this study proposes novel resource reusing schemes by multiple transmitters to increase spectrum efficiency. The performance evaluation of the proposed schemes are conducted by incorporating in recent specification, thus the simulation results demonstrate that proposed schemes outperform the baseline scheme.Chapter 1 Introduction 1 1.1 Device-to-Device (D2D) Network 2 1.1.1 D2D Discovery 2 1.1.2 D2D Communication 3 1.2 Overview of Existing Approaches 4 1.2.1 LTE in 3GPP Standard 4 1.2.2 D2D in 3GPP Standard 4 1.2.3 Approaches for D2D Communication 5 1.2.4 Approaches for D2D Discovery 6 1.2.5 Approaches for D2D Spatial Reuse 6 1.3 Main Contributions 7 1.3.1 Interference Mitigation 7 1.3.2 Discovery Protocol Design 8 1.3.3 Spatial Reuse Operation 8 1.4 Organization of the Dissertation 9 Chapter 2 Interference Mitigation for D2D Discovery 10 2.1 Introduction 10 2.2 Background 11 2.2.1 Resource Selection 11 2.2.2 Resource Collision 13 2.2.3 Motivation 14 2.3 System Model 15 2.3.1 D2D System 15 2.3.2 Criteria of Discovery Success 16 2.4 Problem Formulation 17 2.5 Power Control Scheme 18 2.5.1 Power Control Performance 18 2.5.2 Proposed Power Control Algorithm 19 2.6 Collision Resolution Scheme 22 2.6.1 Beacon Design 22 2.6.2 Collision Resolution Scheme 23 2.7 Performance Evaluation 25 2.8 Summary 27 Chapter 3 Protocol Design for D2D Discovery 31 3.1 Introduction 31 3.2 Background 32 3.2.1 Radio Resource Control (RRC) 32 3.2.2 Discontinuous Reception (DRX) 33 3.2.3 Motivation 34 3.3 System Model 35 3.3.1 D2D Beacon 35 3.3.2 D2D Discovery 36 3.3.3 Synchronization 36 3.3.4 D2D Link Setup 38 3.4 Numerical Analysis 39 3.4.1 Average Power Model 39 3.4.2 Base Power Model 40 3.4.3 D2D Link Setup Delay 41 3.5 Performance Evaluation 42 3.6 Summary 42 Chapter 4 Spatial Reuse for D2D Communication 46 4.1 Introduction 46 4.2 Background 48 4.2.1 D2D Communication 48 4.2.2 D2D Group Communication 49 4.2.3 Motivation 51 4.3 Problem Statement 53 4.3.1 Criteria of Successful D2D link 53 4.3.2 Spatial Reuse Interference 54 4.4 Proposed Spatial Reuse Scheme 55 4.4.1 Range-Based Approach 55 4.4.2 Spatial Reuse Scenario 56 4.4.3 Upper Bound and Lower Bound . 58 4.5 Spatial Reuse Operation 60 4.5.1 Spatial Reuse Procedure 60 4.5.2 Spatial Reuse Grant 61 4.6 SR with Multiple Transmitters 63 4.6.1 PS-SR Scheme 64 4.6.2 P-SR Scheme 65 4.7 Performance Evaluation 67 4.8 Comparison of PS-SR and P-SR Schemes 72 4.8.1 Overhead Comparison 72 4.9 Summary 74 Chapter 5 Conclusion 75 5.1 Summary 75 5.2 Future Work 77 Bibliography 79 Abstract (In Korean) 87Docto
    corecore