888 research outputs found

    PAC Learning, VC Dimension, and the Arithmetic Hierarchy

    Get PDF
    We compute that the index set of PAC-learnable concept classes is mm-complete Σ30\Sigma^0_3 within the set of indices for all concept classes of a reasonable form. All concept classes considered are computable enumerations of computable Π10\Pi^0_1 classes, in a sense made precise here. This family of concept classes is sufficient to cover all standard examples, and also has the property that PAC learnability is equivalent to finite VC dimension

    Renormalization and Computation II: Time Cut-off and the Halting Problem

    Full text link
    This is the second installment to the project initiated in [Ma3]. In the first Part, I argued that both philosophy and technique of the perturbative renormalization in quantum field theory could be meaningfully transplanted to the theory of computation, and sketched several contexts supporting this view. In this second part, I address some of the issues raised in [Ma3] and provide their development in three contexts: a categorification of the algorithmic computations; time cut--off and Anytime Algorithms; and finally, a Hopf algebra renormalization of the Halting Problem.Comment: 28 page

    Renormalisation and computation II: time cut-off and the Halting Problem

    No full text

    Arithmetic complexity via effective names for random sequences

    Full text link
    We investigate enumerability properties for classes of sets which permit recursive, lexicographically increasing approximations, or left-r.e. sets. In addition to pinpointing the complexity of left-r.e. Martin-L\"{o}f, computably, Schnorr, and Kurtz random sets, weakly 1-generics and their complementary classes, we find that there exist characterizations of the third and fourth levels of the arithmetic hierarchy purely in terms of these notions. More generally, there exists an equivalence between arithmetic complexity and existence of numberings for classes of left-r.e. sets with shift-persistent elements. While some classes (such as Martin-L\"{o}f randoms and Kurtz non-randoms) have left-r.e. numberings, there is no canonical, or acceptable, left-r.e. numbering for any class of left-r.e. randoms. Finally, we note some fundamental differences between left-r.e. numberings for sets and reals
    corecore