21 research outputs found

    A new approach to service provisioning in ATM networks

    Get PDF
    The authors formulate and solve a problem of allocating resources among competing services differentiated by user traffic characteristics and maximum end-to-end delay. The solution leads to an alternative approach to service provisioning in an ATM network, in which the network offers directly for rent its bandwidth and buffers and users purchase freely resources to meet their desired quality. Users make their decisions based on their own traffic parameters and delay requirements and the network sets prices for those resources. The procedure is iterative in that the network periodically adjusts prices based on monitored user demand, and is decentralized in that only local information is needed for individual users to determine resource requests. The authors derive the network's adjustment scheme and the users' decision rule and establish their optimality. Since the approach does not require the network to know user traffic and delay parameters, it does not require traffic policing on the part of the network

    Predicting Internet Bandwidth in Educational Institutions using Langrage’S Interpolation

    Get PDF
    This paper addresses the solution to the problem of Internet Bandwidth optimization and prediction in the institution of higher learning in Nigeria. The operation of the link-load balancer which provides an efficient cost-effective and easy-to-use solution to maximize utilization and availability of internet access is extensively discussed. This enables enterprises to lease for two or three ISP links connecting the internal network to the internet. The paper also proposes the application of the Langrage’s method of interpolation for the predictability of internet bandwidth in the institutions. The analysis provides a unique graphical solution of effective actual bandwidth (Mbps) and the corresponding acceptable number of internet Users (‘000) in the institutions. The prediction allows us to view the actual internet bandwidth and the acceptable number of internet Users as the population of users’ increases. Keywords: Internet Bandwidth, Optimization, Link-Load Balancer, Prediction, Maximized Utilization, Availability of Internet access

    Robust measurement-based buffer overflow probability estimators for QoS provisioning and traffic anomaly prediction applicationm

    Get PDF
    Suitable estimators for a class of Large Deviation approximations of rare event probabilities based on sample realizations of random processes have been proposed in our earlier work. These estimators are expressed as non-linear multi-dimensional optimization problems of a special structure. In this paper, we develop an algorithm to solve these optimization problems very efficiently based on their characteristic structure. After discussing the nature of the objective function and constraint set and their peculiarities, we provide a formal proof that the developed algorithm is guaranteed to always converge. The existence of efficient and provably convergent algorithms for solving these problems is a prerequisite for using the proposed estimators in real time problems such as call admission control, adaptive modulation and coding with QoS constraints, and traffic anomaly detection in high data rate communication networks

    Robust measurement-based buffer overflow probability estimators for QoS provisioning and traffic anomaly prediction applications

    Get PDF
    Suitable estimators for a class of Large Deviation approximations of rare event probabilities based on sample realizations of random processes have been proposed in our earlier work. These estimators are expressed as non-linear multi-dimensional optimization problems of a special structure. In this paper, we develop an algorithm to solve these optimization problems very efficiently based on their characteristic structure. After discussing the nature of the objective function and constraint set and their peculiarities, we provide a formal proof that the developed algorithm is guaranteed to always converge. The existence of efficient and provably convergent algorithms for solving these problems is a prerequisite for using the proposed estimators in real time problems such as call admission control, adaptive modulation and coding with QoS constraints, and traffic anomaly detection in high data rate communication networks

    Internet Data Bandwidth Optimization and Prediction in Higher Learning Institutions Using Lagrange’s Interpolation: A Case of Lagos State University of Science and Technology

    Get PDF
    This research work studies the performance of the internet services of institution of higher learning in Nigeria. Data was collated from Lagos State University of Science and Technology (LASUSTECH) as case study of this research work. The problem of Internet Bandwidth optimization in the institution of higher learning in Nigeria was extensively addressed in this paper. The operation of the Link-Load balancer which provides an efficient cost-effective and easy-to-use solution to maximize utilization and availability of Internet access is discussed. In this research work, the Lagrange’s method of interpolation was used to predict effective internet data bandwidth for significantly increasing number of internet users. The linear Lagrange’s interpolation model (LILAGRINT model) was proposed for LASUSTECH.  The predictions allow us to view the effective internet data bandwidth with respect to the corresponding acceptable number of internet users as the number of user’s increases. The integrity of the model was examined, verified and validated at the ICT department of the institution. The LILAGRINT model was integrated into the management of ICT and tested. The result showed that the proposed LILAGRINT model proved to be highly effective and innovative in the area of internet data bandwidth predictability. Keywords:Internet Data Bandwidth, Optimization, Link-load balancer, Lagrange’s interpolation, Predictions, Management of ICT DOI: 10.7176/CEIS/10-1-04 Publication date:September 30th 202

    Fast simulation of packet loss rates in a shared buffer communications switch

    Get PDF
    This paper describes an efficient technique for estimating, via simulation, the probability of buffer overflows in a queueing model that arises in the analysis of ATM (Asynchronous Transfer Mode) communication switches. There are multiple streams of (autocorrelated) traffic feeding the switch that has a buffer of finite capacity. Each stream is designated as either being of high or low priority. When the queue length reaches a certain threshold, only high priority packets are admitted to the switch's buffer. The problem is to estimate the loss rate of high priority packets. An asymptotically optimal importance sampling approach is developed for this rare event simulation problem. In this approach, the importance sampling is done in two distinct phases. In the first phase, an importance sampling change of measure is used to bring the queue length up to the threshold at which low priority packets get rejected. In the second phase, a different importance sampling change of measure is used to move the queue length from the threshold to the buffer capacity

    Effective bandwidth vectors for multiclass traffic multiplexed in partitioned buffer

    Full text link

    Allocating bandwidth for bursty connections

    Full text link
    corecore