710 research outputs found

    Fiber optic microphone having a pressure sensing reflective membrane and a voltage source for calibration purpose

    Get PDF
    A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a back plate for damping membrane motion. The back plate further provides a means for on-line calibration of the microphone

    High temperature fiber optic microphone having a pressure-sensing reflective membrane under tensile stress

    Get PDF
    A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a backplate for damping membrane motion. The backplate further provides a means for on-line calibration of the microphone

    Terahertz Photoacoustic Spectroscopy Using an MEMS Cantilever Sensor

    Get PDF
    In this paper, a microelectromechanical systems cantilever sensor was designed, modeled, and fabricated to measure the photoacoustic (PA) response of gases under very low vacuum conditions. The micromachined devices were fabricated using silicon-on-insulator wafers and then tested in a custom-built, miniature, vacuum chamber during this first-ever demonstration. Terahertz radiation was amplitude modulated to excite the gas under test and perform PA molecular spectroscopy. Experimental data show a predominantly linear response that directly correlates measured cantilever deflection to PA signals. Excellent low pressure (i.e., 2-40 mTorr) methyl cyanide PA spectral data were collected resulting in a system sensitivity of 1.97 × 10 -5 cm -1 and a normalized noise equivalent absorption coefficient of 1.39 × 10 -9 cm -1 W Hz -1/2

    Piezoelectric Transducers Based on Aluminum Nitride and Polyimide for Tactile Applications

    Get PDF
    The development of micro systems with smart sensing capabilities is paving the way to progresses in the technology for humanoid robotics. The importance of sensory feedback has been recognized the enabler of a high degree of autonomy for robotic systems. In tactile applications, it can be exploited not only to avoid objects slipping during their manipulation but also to allow safe interaction with humans and unknown objects and environments. In order to ensure the minimal deformation of an object during subtle manipulation tasks, information not only on contact forces between the object and fingers but also on contact geometry and contact friction characteristics has to be provided. Touch, unlike other senses, is a critical component that plays a fundamental role in dexterous manipulation capabilities and in the evaluation of objects properties such as type of material, shape, texture, stiffness, which is not easily possible by vision alone. Understanding of unstructured environments is made possible by touch through the determination of stress distribution in the surrounding area of physical contact. To this aim, tactile sensing and pressure detection systems should be integrated as an artificial tactile system. As illustrated in the Chapter I, the role of external stimuli detection in humans is provided by a great number of sensorial receptors: they are specialized endings whose structure and location in the skin determine their specific signal transmission characteristics. Especially, mechanoreceptors are specialized in the conversion of the mechanical deformations caused by force, vibration or slip on skin into electrical nerve impulses which are processed and encoded by the central nervous system. Highly miniaturized systems based on MEMS technology seem to imitate properly the large number of fast responsive mechanoreceptors present in human skin. Moreover, an artificial electronic skin should be lightweight, flexible, soft and wearable and it should be fabricated with compliant materials. In this respect a big challenge of bio-inspired technologies is the efficient application of flexible active materials to convert the mechanical pressure or stress into a usable electric signal (voltage or current). In the emerging field of soft active materials, able of large deformation, piezoelectrics have been recognized as a really promising and attractive material in both sensing and actuation applications. As outlined in Chapter II, there is a wide choice of materials and material forms (ceramics: PZT; polycrystalline films: ZnO, AlN; polymers and copolymers: PVDF, PVDF-TrFe) which are actively piezoelectric and exhibit features more or less attractive. Among them, aluminum nitride is a promising piezoelectric material for flexible technology. It has moderate piezoelectric coefficient, when available in c-axis oriented polycrystalline columnar structure, but, at same time, it exhibits low dielectric constant, high temperature stability, large band gap, large electrical resistivity, high breakdown voltage and low dielectric loss which make it suitable for transducers and high thermal conductivity which implies low thermal drifts. The high chemical stability allows AlN to be used in humid environments. Moreover, all the above properties and its deposition method make AlN compatible with CMOS technology. Exploiting the features of the AlN, three-dimensional AlN dome-shaped cells, embedded between two metal electrodes, are proposed in this thesis. They are fabricated on general purpose Kapton™ substrate, exploiting the flexibility of the polymer and the electrical stability of the semiconductor at the same time. As matter of fact, the crystalline layers release a compressive stress over the polymer, generating three-dimensional structures with reduced stiffness, compared to the semiconductor materials. In Chapter III, a mathematical model to calculate the residual stresses which arise because of mismatch in coefficient of thermal expansion between layers and because of mismatch in lattice constants between the substrate and the epitaxially grown films is adopted. The theoretical equation is then used to evaluate the dependence of geometrical features of the fabricated three-dimensional structures on compressive residual stress. Moreover, FEM simulations and theoretical models analysis are developed in order to qualitative explore the operation principle of curved membranes, which are labelled dome-shaped diaphragm transducers (DSDT), both as sensors and as piezo-actuators and for the related design optimization. For the reliability of the proposed device as a force/pressure sensor and piezo-actuator, an exhaustive electromechanical characterization of the devices is carried out. A complete description of the microfabrication processes is also provided. As shown in Chapter IV, standard microfabrication techniques are employed to fabricate the array of DSDTs. The overall microfabrication process involves deposition of metal and piezoelectric films, photolithography and plasma-based dry and wet etching to pattern thin films with the desired features. The DSDT devices are designed and developed according to FEM and theoretical analysis and following the typical requirements of force/pressure systems for tactile applications. Experimental analyses are also accomplished to extract the relationship between the compressive residual stress due to the aluminum nitride and the geometries of the devices. They reveal different deformations, proving the dependence of the geometrical features of the three-dimensional structures on residual stress. Moreover, electrical characterization is performed to determine capacitance and impedance of the DSDTs and to experimentally calculate the relative dielectric constant of sputtered AlN piezoelectric film. In order to investigate the mechanical behaviour of the curved circular transducers, a characterization of the flexural deflection modes of the DSDT membranes is carried out. The natural frequency of vibrations and the corresponding displacements are measured by a Laser Doppler Vibrometer when a suitable oscillating voltage, with known amplitude, is applied to drive the piezo-DSDTs. Finally, being developed for tactile sensing purpose, the proposed technology is tested in order to explore the electromechanical response of the device when impulsive dynamic and/or long static forces are applied. The study on the impulsive dynamic and long static stimuli detection is then performed by using an ad hoc setup measuring both the applied loading forces and the corresponding generated voltage and capacitance variation. These measurements allow a thorough test of the sensing abilities of the AlN-based DSDT cells. Finally, as stated in Chapter V, the proposed technology exhibits an improved electromechanical coupling with higher mechanical deformation per unit energy compared with the conventional plate structures, when the devices are used as piezo-actuator. On the other hand, it is well suited to realize large area tactile sensors for robotics applications, opening up new perspectives to the development of latest generation biomimetic sensors and allowing the design and the fabrication of miniaturized devices

    On the Feasibility of Fan-Out Wafer-Level Packaging of Capacitive Micromachined Ultrasound Transducers (CMUT) by Using Inkjet-Printed Redistribution Layers

    Get PDF
    Fan-out wafer-level packaging (FOWLP) is an interesting platform for Microelectromechanical systems (MEMS) sensor packaging. Employing FOWLP for MEMS sensor packaging has some unique challenges, while some originate merely from the fabrication of redistribution layers (RDL). For instance, it is crucial to protect the delicate structures and fragile membranes during RDL formation. Thus, additive manufacturing (AM) for RDL formation seems to be an auspicious approach, as those challenges are conquered by principle. In this study, by exploiting the benefits of AM, RDLs for fan-out packaging of capacitive micromachined ultrasound transducers (CMUT) were realized via drop-on-demand inkjet printing technology. The long-term reliability of the printed tracks was assessed via temperature cycling tests. The effects of multilayering and implementation of an insulating ramp on the reliability of the conductive tracks were identified. Packaging-induced stresses on CMUT dies were further investigated via laser-Doppler vibrometry (LDV) measurements and the corresponding resonance frequency shift. Conclusively, the bottlenecks of the inkjet-printed RDLs for FOWLP were discussed in detail.EC/H2020/737487/EU/(Ultra)Sound Interfaces and Low Energy iNtegrated SEnsors/SILENS

    High temperature sensor/microphone development for active noise control

    Get PDF
    The industrial and scientific communities have shown genuine interest in electronic systems which can operate at high temperatures, among which are sensors to monitor noise, vibration, and acoustic emissions. Acoustic sensing can be accomplished by a wide variety of commercially available devices, including: simple piezoelectric sensors, accelerometers, strain gauges, proximity sensors, and fiber optics. Of the several sensing mechanisms investigated, piezoelectrics were found to be the most prevalent, because of their simplicity of design and application and, because of their high sensitivity over broad ranges of frequencies and temperature. Numerous piezoelectric materials are used in acoustic sensors today; but maximum use temperatures are imposed by their transition temperatures (T(sub c)) and by their resistivity. Lithium niobate, in single crystal form, has the highest operating temperature of any commercially available material, 650 C; but that is not high enough for future requirements. Only two piezoelectric materials show potential for use at 1000 C; AlN thin film reported to be piezoactive at 1150 C, and perovskite layer structure (PLS) materials, which possess among the highest T(sub c) (greater than 1500 C) reported for ferroelectrics. A ceramic PLS composition was chosen. The solid solution composition, 80% strontium niobate (SN) and 20% strontium tantalate (STa), with a T(sub c) approximately 1160 C, was hot forged, a process which concurrently sinters and renders the plate-like grains into a highly oriented configuration to enhance piezo properties. Poled samples of this composition showed coupling (k33) approximately 6 and piezoelectric strain constant (d33) approximately 3. Piezoactivity was seen at 1125 C, the highest temperature measurement reported for a ferroelectric ceramic. The high temperature piezoelectric responses of this, and similar PLS materials, opens the possibility of their use in electronic devices operating at temperatures up to 1000 C. Concurrent with the materials study was an effort to define issues involved in the development of a microphone capable of operation at temperatures up to 1000 C; important since microphones capable of operation above 260 C are not generally available. The distinguishing feature of a microphone is its diaphragm which receives sound from the atmosphere: whereas, most other acoustic sensors receive sound through the solid structure on which they are installed. In order to gain an understanding of the potential problems involved in designing and testing a high temperature microphone, a prototype was constructed using a commercially available lithium niobate piezoelectric element in a stainless steel structure. The prototype showed excellent frequency response at room temperature, and responded to acoustic stimulation at 670 C, above which temperature the voltage output rapidly diminished because of decreased resistivity in the element. Samples of the PLS material were also evaluated in a simulated microphone configuration, but their voltage output was found to be a few mV compared to the 10 output of the prototype

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    MEMS microphone design.

    Get PDF
    This thesis presents an overview of microelectromechanical (MEMS) capacitive type microphone design for use in hearing instruments. A cohesive methodology is achieved via a mechanical equation of motion. Resulting in displacement, change in capacitance, sensitivity and pull-in voltage. All derived from one equation. From this investigation it is apparent that sensitivity is the most important factor in MEMS microphone design. The topics covered in the overview are: MEMS microphone design considerations, comparison of microphone types, signal detection methods, sources of dampening, modeling methods, sensitivity estimation, pull-in voltage estimation, bias voltage, ultimate tensile strength, design space optimization and MEMS microphone design flow. A current state of the art design is used as an example throughout the overview. The current state of the art design utilises a square diaphragm with width 2600, thickness 3 and air gap 4 mum, with 361 vent holes of effective radius 33.9 mum in a 13 mum thick backplate. With the initial modeling conclusions in place, two new MEMS capacitive microphone designs are introduced, modeled and analysed. (Abstract shortened by UMI.)Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2003 .S65. Source: Masters Abstracts International, Volume: 42-05, page: 1829. Adviser: W. C. Miller. Thesis (M.A.Sc.)--University of Windsor (Canada), 2003
    corecore