103 research outputs found

    WiCop: Engineering WiFi Temporal White-Spaces for Safe Operations of Wireless Body Area Networks in Medical Applications

    Full text link

    Viterbi Decoding for OFDM systems operating in narrow band interference

    Get PDF
    Our main objective in this thesis is to study the effect of narrow band interference on OFDM systems operating in the 2.4 Ghz ISM band and identify ways to improve upon existing techniques to deal with them. We first consider how narrow band signals interfere with OFDM systems. Various noise variance estimation and signal to noise ratio estimation techniques for OFDM systems are then discussed. We also study the conventional Viterbi Algorithm that is used in OFDM wireless systems and the proposed modifications to it in the literature. Our main contribution is a detailed experimental analysis of a modified Viterbi Algorithm that outperforms the conventional one in the presence of narrow band interference. Interference samples captured using a wireless hardware platform were used in simulation to test this modified algorithm. From our analysis we realize that in the presence of narrow band frequency selective interference (such as Bluetooth), the conventional Viterbi Algorithm can be modified to improve the performance of OFDM systems

    WiCop : engineering WiFi temporal white-spaces for safe operations of wireless body area networks in medical applications

    Get PDF
    2011-2012 > Academic research: refereed > Refereed conference paperAccepted ManuscriptPublishe

    Investigation of Wireless LAN for IEC 61850 based Smart Distribution Substations

    Get PDF
    The IEC 61850 standard is receiving acceptance worldwide to deploy Ethernet Local Area Networks (LANs) for electrical substations in a smart grid environment. With the recent growth in wireless communication technologies, wireless Ethernet or Wireless LAN (WLAN), standardized in IEEE 802.11, is gaining interest in the power industry for substation automation applications, especially at the distribution level. Low Voltage (LV) / Medium Voltage (MV) distribution substations have comparatively low time-critical performance requirements. At the same time, expensive but high data-rate fiber-based Ethernet networks may not be a feasible solution for the MV/LV distribution network. Extensive work is carried out to assess wireless LAN technologies for various IEC 61850 based smart distribution substation applications: control and monitoring; automation and metering; and over-current protection. First, the investigation of wireless LANs for various smart distribution substation applications was initiated with radio noise-level measurements in total five (27.6 and 13.8 kV) substations owned by London Hydro and Hydro One in London, ON, Canada. The measured noise level from a spectrum analyzer was modeled using the Probability Distribution Function (PDF) tool in MATLAB, and parameters for these models in the 2.4 GHz band and 5.8 GHz band were obtained. Further, this measured noise models were used to simulate substation environment in OPNET (the industry-trusted communication networking simulation) tool. In addition, the efforts for developing dynamic models of WLAN-enabled IEC 61850 devices were initiated using Proto-C programming in OPNET tool. The IEC 61850 based devices, such as Protection and Control (P&C) Intelligent Electronic Devices (IEDs) and Merging Unit (MU) were developed based on the OSI-7 layer stack proposed in IEC 61850. The performance of various smart distribution substation applications was assessed in terms of average and maximum message transfer delays and throughput. The work was extended by developing hardware prototypes of WLAN enabled IEC 61850 devices in the R&D laboratory at University of Western Ontario, Canada. P&C IED, MU, Processing IED, and Echo IED were developed using industrial embedded computers over the QNX Real Time Operating System (RTOS) platform. The functions were developed using hard real-time multithreads, timers, and so on to communicate IEC 61850 application messages for analyzing WLAN performance in terms of Round Trip Time (RTT) and throughput. The laboratory was set up with WLAN-enabled IEC 61850 devices, a commercially available WLAN Access Point (AP), noise sources, and spectrum and network analyzers. Performance of various smart distribution substation applications is examined within the developed laboratory. Finally, the performance evaluation was carried out in real-world field testing at 13.8 and 27.6 kV distribution substations, by installing the devices in substation control room and switchyard. The RTT of IEC 61850 based messages and operating time of the overcurrent protection using WLAN based communication network were evaluated in the harsh environment of actual distribution substations. The important findings from the exhaustive investigation were discussed throughout this work

    Frequency hopping in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are nowadays being used to collectively gather and spread information in different kinds of applications, for military, civilian, environmental as well as commercial purposes. Therefore the proper functioning of WSNs under different kinds of environmental conditions, especially hostile environments, is a must and a lot of research currently ongoing. The problems related to the initialization and deployment of WSNs under harsh and resource limited conditions are investigated in this thesis. Frequency hopping (FH) is a spread spectrum technique in which multiple channels are used, or hoped, for communications across the network. This mitigates the worst effects of interference with frequency agile communication systems rather than by brute force approaches. FH is a promising technique for achieving the coexistence of sensor networks with other currently existing wireless systems, and it is successful within the somewhat limited computational capabilities of the sensor nodes hardware radios. In this thesis, a FH scheme for WSNs is implemented for a pair of nodes on an application layer. The merits and demerits of the scheme are studied for different kinds of WSN environments. The implementation has been done using a Sensinode NanoStack, a communication stack for internet protocol (IP) based wireless sensor networks and a Sensinode Devkit, for an IPv6 over low power wireless personal area network (6LoWPAN). The measurements are taken from the developed test bed and channel simulator for different kinds of scenarios. The detailed analysis of the FH scheme is done to determine its usefulness against interference from other wireless systems, especially wireless local area networks (WLANs), and the robustness of the scheme to combat fading or frequency selective fading

    Software Implementation of Orthogonal Frequency Division Multiplexing (OFDM)Scheme for Mobile Radio Channel

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a transmission technique which ensures efficient utilization of the spectrum by allowing overlap of carriers. OFDM is a combination of modulation and multiplexing that is used in the transmission of information and data. Compared with the other wireless transmission techniques like Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), OFDM has numerous advantages like high spectral density, its robustness to channel fading, its ability to overcome several radio impairment factors such as effect of AWGN, impulse noise, multipath fading, etc. Due to this it finds wide application in Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB), and Wireless LAN. Most of the wireless LAN standards like IEEE 802.11a or IEEE 802.11g use the OFDM as the main multiplexing scheme for better use of spectrum. In fact in the 4G telecommunication system OFDMA is the backbone of it. This project deals with the software simulation of this OFDM system in a mobile radio channel using the software tools of MATLAB® and SIMULINK®. From this simulation the performance of OFDM system in mobile radio channel is studied. Apart from this we also compare the OFDM system performance with the performance of the DS-CDMA system in the mobile radio channel

    Performance modelling of fairness in IEEE 802.11 wireless LAN protocols

    Get PDF
    PhD ThesisWireless communication has become a key technology in the modern world, allowing network services to be delivered in almost any environment, without the need for potentially expensive and invasive fixed cable solutions. However, the level of performance experienced by wireless devices varies tremendously on location and time. Understanding the factors which can cause variability of service is therefore of clear practical and theoretical interest. In this thesis we explore the performance of the IEEE 802.11 family of wireless protocols, which have become the de facto standard for Wireless Local Area Networks (WLANs). The specific performance issue which is investigated is the unfairness which can arise due to the spatial position of nodes in the network. In this work we characterise unfairness in terms of the difference in performance (e.g. throughput) experienced by different pairs of communicating nodes within a network. Models are presented using the Markovian process algebra PEPA which depict different scenarios with three of the main protocols, IEEE 802.11b, IEEE 802.11g and IEEE 802.11n. The analysis shows that performance is affected by the presence of other nodes (including in the well-known hidden node case), by the speed of data and the size of the frames being transmitted. The collection of models and analysis in this thesis collectively provides not only an insight into fairness in IEEE 802.11 networks, but it also represents a significant use case in modelling network protocols using PEPA. PEPA and other stochastic process algebra are extremely powerful tools for efficiently specifying models which might be very complex to study using conventional simulation approaches. Furthermore the tool support for PEPA facilitates the rapid solution of models to derive key metrics which enable the modeller to gain an understanding of the network behaviour across a wide range of operating conditions. From the results we can see that short frames promote a greater fairness due to the more frequent spaces between frames allowing other senders to transmit. An interesting consequence of these findings is the observation that varying frame length can play a role in addressing topological unfairness, which leads to the analysis of a novel model of IEEE 802.11g with variable frame lengths. While varying frame lengths might not always be practically possible, as frames need to be long enough for collisions to be detected, IEEE 802.11n supports a number of mechanisms for frame aggregation, where successive frames may be sent in series with little or no delay between them. We therefore present a novel model of IEEE 802.11n with frame aggregation to explore how this approach affects fairness and, potentially, can be used to address unfairness by allowing affected nodes to transmit longer frame bursts.Kurdistan Region Government of Iraq (KRG) sponso

    On the robustness of IEEE 802.11 rate adaptation algorithms against smart jamming

    Full text link
    corecore