58 research outputs found

    Energy Harvesting and Energy Storage Systems

    Get PDF
    This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources

    Novel Controls of Photovoltaic (PV) Solar Farms

    Get PDF
    Solar Farms are absolutely idle in the night and even during daytime operate below capacity in early mornings and late afternoons. Thus, the entire expensive asset of solar farms remains highly unutilized. This thesis presents novel technologies for utilization of PV solar farm inverter in nighttime for providing multiple benefits to power systems, as well as accomplishing the same objectives during the daytime from the inverter capacity left after production of real power. The new technology transforms a solar farm inverter functionally into a dynamic reactive power compensator known as STATCOM, and termed PV-STATCOM. A novel coordinated control of PV-STATCOMs is proposed for loss reduction in a distribution network. The saved energy is substantial and can be used for powering several homes annually. The second novel PV-STATCOM control involves a temporary curtailment of real power production and utilization of the available reactive power capacity to prevent the instability of a critical induction motor load. The third novel PVSTATCOM control is employed to significantly enhance the power transfer limit of a long transmission line both in the nighttime and also during daytime even when the solar farm is producing a large amount of real power. A new technique for short circuit current management is developed for a conventional PV solar farm that can potentially solve the problem due to which several solar farms have been denied connectivity in Ontario. This thesis has contributed to two patent applications and presented first time implementations of another two filed patents. A generalized PV solar system model in EMTDC/PSCAD software has been developed and validated with manufacturer\u27s datasheet. Another contribution of this thesis is the first time harmonics impact study of the largest solar farm in Canada, in the distribution utility network of Bluewater Power, in Sarnia, Ontario. This thesis makes a strong case for relaxing the present grid codes to allow solar farms to exercise these novel controls. This technology can open up new avenues for solar farms to earn revenues apart from the sale of real power. This will require appropriate agreements between the regulators, network utilities, solar farm developers and inverter manufacturers

    Power quality enhancement in electricity networks using grid-connected solar and wind based DGs

    Get PDF
    The integration of DG into utility networks has significantly increased over the past years primarily as a result of growing energy demand, coupled with the environmental impacts posed by conventional fossil fuel-based power generation. The prominent DG technologies which are capable of meeting bulk energy demands and are clean energy sources are wind and solar energy sources. The resources for solar and wind based DG are available in abundance in most geographical locations in South Africa and the rest of Africa. Through the Renewable Energy Independent Power Producer Procurement Programme (REIPPPP) introduced by the South African government in 2011, 3 920 MW of renewable energy has been procured to date. Out of this, solar and wind energy constitute 2 200 MW and 960 MW, respectively. Grid integration of solar and wind-based intermittent DGs may however pose negative impacts on the quality of power supplied by the utility network. Some of the detrimental impacts of DG include voltage fluctuations, flicker, etc. which are in general categorised as power quality (PQ) problems. The proper planning of DG integration is required to mitigate the negative impacts they pose on system's PQ to ensure that the performance of the utility network is enhanced in terms of the overall PQ improvement of the system. This dissertation reviews general PQ problems in utility networks with DG integration and whether poor planning of DG integration affects PQ negatively. The work emphasizes on the impacts of grid integration of wind and solar PV sources on power quality. It investigates the manner in which wind and solar energy systems differ in their impacts and capacity to improve PQ of the network in terms of a number of factors such as point of integration and capacity of DG, type of DG, network loading, etc. The role of grid-integrated DG in PQ improvement in electricity network is also investigated by exploring different PQ improvement techniques. The networks considered for the grid integration of DG for PQ improvement in this work are the IEEE 9-bus sub-transmission network at the nominal voltage of 230kV and the IEEE 33-bus distribution network at the nominal voltage of 12 kV. The aspects essential for facilitating proper planning of DG integration for PQ improvement and total loss reduction are investigated and the comparative analysis is made between grid integration of wind and solar PV based DGs. The simulations of different case studies in this work are done using DIgSILENT PowerFactory version 14.1 as well as coding in MATLAB. The cases studies conducted are aimed at facilitating the proper planning of grid integration of wind and solar PV-based DGs by comparing their PQ improvement capabilities under different scenarios. First the investigation of how their location and capacity affect the network voltage profiles and active power losses is conducted. Their ability to improve the system's PQ is also studied by observing PQ improvement strategies such as voltage control, installation of energy storage and the optimal placement of DGs under different scenarios. In order to account for the weakness of most South African utility grids, PQ improvement in weak networks with DG integration is also studied by investigating how DG integration in networks with different grid strengths affect the system's PQ. The results provide an understanding of the role of grid integration of wind and solar based DGs on PQ which is useful in the planning of grid integration of RE, particularly in South African electricity networks. The results revealed that the location and capacity of integrated DGs indeed affect the quality of power as well as active power losses in the grid. It is also established that a significant improvement in network's PQ and line loss reduction can be achieved in networks with wind and solar integration. The results however indicated that wind and solar PV based DGs differ in their impacts and capacity to improve the quality of power in the network. Furthermore, the results revealed that wind and solar plants integration into weak utility grids may pose adverse impacts on the system's PQ. It was however established that including reactive power control devices such as STATCOM and SVC at the PCC can successfully improve the system's PQ and enable grid code compliance in electricity networks with DG integration

    Online Control of Modular Active Power Line Conditioner to Improve Performance of Smart Grid

    Get PDF
    This thesis is explored the detrimental effects of nonlinear loads in distribution systems and investigated the performances of shunt FACTS devices to overcome these problems with the following main contribution: APLC is an advanced shunt active filter which can mitigate the fundamental voltage harmonic of entire network and limit the THDv and individual harmonic distortion of the entire network below 5% and 3%, respectively, as recommended by most standards such as the IEEE-519

    Improvement of active distribution systems with high penetration capacities of shunt reactive compensators and distributed generators using Bald Eagle Search

    Get PDF
    This work proposes an intelligent allocation of distributed generation (DG) units and shunt reactive compensators (SRC) with high penetration capacities into distribution systems for power loss mitigation using the Bald Eagle Search (BES) optimization algorithm. The intelligent allocation causes a reduction in voltage variations and enhances the voltage stability of the systems. The SRC units include shunt capacitors (SC), Static Var Compensators (SVC), and Distribution Static Compensators (DSTATCOM), which are determined according to their capacities. The optimization study includes the 33-bus and the 118-bus distribution systems as medium to large systems. Performance parameters, including the reactive power loss, Total Voltage Deviation (TVD), and Stability Index (SI), besides the power loss, are recorded for each optimization case study. When the BES algorithm optimizes 1, 2, and 3 DG units operating at optimal power factor (OPF) into the 33-bus systems, percentage reductions of power loss reach 67.84%, 86.49%, and 94.44%, respectively. Reductions of 28.26%, 34.47%, 35.24%, and 35.44% are achieved in power loss while optimizing 1, 3, 5, and 7 SRC units. With a combination of DG/SRC units, the power loss reductions achieve 72.30%, 93.89%, and 97.49%, optimizing 1, 3, and 5 pairs of them. Similar reductions are achieved for the rest of the performance parameters. With high penetration of compensators into the 118-bus system, the percentage reductions of power loss are 29.14%, 73.27%, 83.72%, 90.14%, and 93.41% for optimal allocations of 1, 3, 5, 7, and 9 DG units operating at OPF. The reduction reaches 11.15%, 39.08% with 1 and 21 devices when optimizing the SRC. When DG SRC units are optimized together, power loss turns out to be 32.83%, 73.31%, 83.32%, 88.52%, and 91.29% with 1, 3, 5, 7, and 9 pairs of them. The approach leads to an enhanced voltage profile near an acceptable range of bus voltages, reduces the voltage fluctuation substantially, and enhances the system stability. The study also ensures the BES algorithm’s capability to solve these nonlinear optimization problems with high decision-variable numbers

    Power quality improvement in low voltage distribution network utilizing improved unified power quality conditioner.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The upgrade of the power system, network, and as it attained some complexity level, the voltage related problems and power loss has become frequently pronounced. The power quality challenges load at extreme end of the feeder like voltage sag and swell, and power loss at load centre due to peak load as not received adequate attention. Therefore, this research proposes a Power Angle Control PAC approach for enhancing voltage profile and mitigating voltage sag, voltage swell, and reduced power loss in low voltage radial distribution system (RDS). The amelioration of voltage sag, voltage swell, weak voltage profile, and power loss with a capable power electronics-based power controller device known as Improve Unified Power Quality Conditioner I-UPQC was conceived. Also, the same controller was optimally implemented using hybrid of genetic algorithm and improved particle swarm optimization GA-IPSO in RDS to mitigate the voltage issues, and power loss experienced at peak loading. A new control design-model of Power Angle Control (PAC) of the UPQC has been designed and established using direct, quadrature, and zero components dq0 and proportional integral (PI) controller method. The simulation was implemented in MATLAB/Simulink environment. The results obtained at steady-state condition and when the new I-UPQC was connected show that series inverter can participate actively in ameliorating in the process of mitigating sag and swell by maintaining a PAC of 25% improvement. It was observed that power loss reduced from 1.7% to 1.5% and the feeder is within the standard limit of ±5%. Furthermore, the interconnection of I-UPQC with photovoltaic solar power through the DC link shows a better voltage profile while the load voltage within the allowable range of ±5% all through the disturbance and power loss reduction is 1.3%. Lastly, results obtained by optimal allocation of I-UPQC in RDS using analytical and GA-IPSO show that reactive power injection improved the voltage related issues from 0.952 to 0.9989 p.u., and power loss was further reduced to 1.2% from 3.4%. Also, the minimum bus voltage profile, voltage sag, and power loss are within statutory limits of ±5 % and less than 2 %, respectively. The major contributions of this research are the reduction of sag impact and power loss on the sensitive load in RDS feeder.Publications on page iii

    Review on distribution network optimization under uncertainty

    Get PDF
    With the increase of renewable energy in electricity generation and increased engagement from demand sides, distribution network planning and operation face great challenges in the provision of stable, secure and dedicated service under a high level of uncertainty in network behaviors. Distribution network planning and operation, at the same time, also benefit from the changes of current and future distribution networks in terms of the availability of increased resources, diversity, smartness, controllability and flexibility of the distribution networks. This paper reviews the critical optimization problems faced by distribution planning and operation, including how to cope with these changes, how to integrate an optimization process in a problem-solving framework to efficiently search for optimal strategy and how to optimize sources and flexibilities properly in order to achieve cost-effective operation and provide quality of services as required, among other factors. This paper also discusses the approaches to reduce the heavy computation load when solving large-scale network optimization problems, for instance by integrating the prior knowledge of network configuration in optimization search space. A number of optimization techniques have been reviewed and discussed in the paper. This paper also discusses the changes, challenges and opportunities in future distribution networks, analyzes the possible problems that will be faced by future network planning and operations and discusses the potential strategies to solve these optimization problems

    Evolution of microgrids with converter-interfaced generations: Challenges and opportunities

    Full text link
    © 2019 Elsevier Ltd Although microgrids facilitate the increased penetration of distributed generations (DGs) and improve the security of power supplies, they have some issues that need to be better understood and addressed before realising the full potential of microgrids. This paper presents a comprehensive list of challenges and opportunities supported by a literature review on the evolution of converter-based microgrids. The discussion in this paper presented with a view to establishing microgrids as distinct from the existing distribution systems. This is accomplished by, firstly, describing the challenges and benefits of using DG units in a distribution network and then those of microgrid ones. Also, the definitions, classifications and characteristics of microgrids are summarised to provide a sound basis for novice researchers to undertake ongoing research on microgrids
    corecore