1,008 research outputs found

    BER of MRC for M-QAM with imperfect channel estimation over correlated Nakagami-m fading

    Get PDF
    In this contribution, we provide an exact BER analysis for M-QAM transmission over arbitrarily correlated Nakagami-m fading channels with maximal-ratio combining (MRC) and imperfect channel estimation at the receiver. Assuming an arbitrary joint fading distribution and a generic pilot-based channel estimation method, we derive an exact BER expression that involves an expectation over (at most) 4 variables, irrespective of the number of receive antennas. The resulting BER expression includes well-known PDFs and the PDF of only the norm of the channel vector. In order to obtain the latter PDF for arbitrarily correlated Nakagami-m fading, several approaches from the literature are discussed. For identically distributed and arbitrarily correlated Nakagami-m channels with integer m, we present several BER performance results, which are obtained from numerical evaluation and confirmed by straightforward computer simulations. The numerical evaluation of the exact BER expression turns out to be much less time-consuming than the computer simulations

    On the Sum of Fisher-Snedecor F Variates and its Application to Maximal-Ratio Combining

    Full text link
    Capitalizing on the recently proposed Fisher-Snedecor F composite fading model, in this letter, we investigate the sum of independent but not identically distributed (i.n.i.d.) Fisher-Snedecor F variates. First, a novel closed-form expression is derived for the moment generating function of the instantaneous signal-to-noise ratio. Based on this, the corresponding probability density function and cumulative distribution function of the sum of i.n.i.d. Fisher- Snedecor F variates are derived, which are subsequently employed in the analysis of multiple branch maximal-ratio combining (MRC). Specifically, we investigate the impact of multipath and shadowed fading on the outage probability and outage capacity of MRC based receivers. In addition, we derive exact closed-form expressions for the average bit error rate of coherent binary modulation schemes followed by an asymptotic analysis which provides further insights into the effect of the system parameters on the overall performance. Importantly, it is shown that the effect of multipath fading on the system performance is more pronounced than that of shadowing.Comment: 5 pages, 3 figure

    Analysis and optimization of pilot symbol-assisted Rake receivers for DS-CDMA systems

    Get PDF
    The effect of imperfect channel estimation (CE) on the performance of pilot-symbol-assisted modulation (PSAM) and MRC Rake reception over time- or frequency-selective fading channels with either a uniform power delay profile (UPDP) or a nonuniform power delay profile (NPDP) is investigated. For time-selective channels, a Wiener filter or linear minimum mean square error (LMMSE) filter for CE is considered, and a closed-form asymptotic expression for the mean square error (MSE) when the number of pilots used for CE approaches infinity is derived. In high signal-to-noise ratio (SNR), the MSE becomes independent of the channel Doppler spectrum. A characteristic function method is used to derive new closed-form expressions for the bit error rate (BER) of Rake receivers in UPDP and NPDP channels. The results are extended to two-dimensional (2-D) Rake receivers. The pilot-symbol spacing and pilot-to-data power ratio are optimized by minimizing the BER. For UPDP channels, elegant results are obtained in the asymptotic case. Furthermore, robust spacing design criteria are derived for the maximum Doppler frequency

    Dual-Branch MRC Receivers under Spatial Interference Correlation and Nakagami Fading

    Full text link
    Despite being ubiquitous in practice, the performance of maximal-ratio combining (MRC) in the presence of interference is not well understood. Because the interference received at each antenna originates from the same set of interferers, but partially de-correlates over the fading channel, it possesses a complex correlation structure. This work develops a realistic analytic model that accurately accounts for the interference correlation using stochastic geometry. Modeling interference by a Poisson shot noise process with independent Nakagami fading, we derive the link success probability for dual-branch interference-aware MRC. Using this result, we show that the common assumption that all receive antennas experience equal interference power underestimates the true performance, although this gap rapidly decays with increasing the Nakagami parameter mIm_{\text{I}} of the interfering links. In contrast, ignoring interference correlation leads to a highly optimistic performance estimate for MRC, especially for large mIm_{\text{I}}. In the low outage probability regime, our success probability expression can be considerably simplified. Observations following from the analysis include: (i) for small path loss exponents, MRC and minimum mean square error combining exhibit similar performance, and (ii) the gains of MRC over selection combining are smaller in the interference-limited case than in the well-studied noise-limited case.Comment: to appear in IEEE Transactions on Communication
    • …
    corecore