3 research outputs found

    D-Band downconversion mixer design in CMOS-SOI

    Get PDF
    Abstract. The current surge in research interest around the sub-THz frequency region comes as a no surprise. The potential for greater data rates and available bandwidths are just a couple reasons why research around these frequencies should be prioritized. Many viable receiver structures have been presented for these frequency regions, but they all have one thing in common: They all include a downconversion mixer. The mixer is a crucial piece in the receiver structure, converting the higher frequency radio frequency (RF) signal to a much lower intermediate frequency (IF) signal using multiplication with a local oscillator (LO) signal. The resulting waveform is much easier to handle for signal processing that comes after. The downconversion should be able to provide a fair amount of gain to the converted signal on a wide range of input signals, measured with the 1dB compression point. The noise figure is also a major consideration for RF-devices, but in the case of the mixer, its importance is not as prevalent as it is for the LNA that precedes it, since the noise of the mixer is attenuated by the gain of the previous stages. This master’s thesis work introduces the basic theory around downconversion mixers, followed by the design of a mixer from schematic level circuit design all the way to the physical layout. The physical design is done using 22nm FDSOI technology, provided by GlobalFoundries. The design is made for a direct conversion receiver using Gilbert cell topology, meaning image rejection is reasonable and depends only on the received signal itself, and good noise and feedthrough performance should be expected in simulations. The mixer is to downconvert a 151 GHz signal down to 0–1 GHz, using an LO signal between 150–151 GHz. Two iterations of the mixer are shown in the end results, the first one being based on the schematic design, and the second one with adjustments made for better performance. While driving a high impedance 500 Ohm load, the second iteration was able to reach a conversion gain of -10.0 dB with a 1dB compression point of 6.4 dBm while dissipating 4.7 mW of power. DSB noise figure was simulated to be 17.3 dB and the LO leakage to the IF output at -27.7 dBm.Alaspäin taajuusmuuntavan sekoittimen suunnittelu D-kaistalle käyttäen CMOS-SOI teknologiaa. Tiivistelmä. Nykyinen tutkimuksen keskittyminen millimetriaalto ja THz taajuusalueille ei tule kenellekään yllätyksenä. Suurempien datanopeuksien ja vapaiden taajuuskaistojen potentiaali ovat vain joitain monista hyvistä käytännön syistä, miksi tutkimusta näiden taajuuksien ympärillä priorisoidaan. Monia käytännöllisiä vastaanotinrakenteita on esitetty näille taajuusalueille ja niillä on kaikilla yksi yhteinen tekijä: tajuusmuunnin alemmille taajuuksille. Taajuusmuunnin eli sekoitin on olennainen osa vastaanotinrakenteita, muuntaen korkeamman radiotaajuuden (RF) matalammalle välitaajuudelle (IF) käyttäen taajuuksien sekoittamista paikallisoskillaattorilla (LO). Mikserin ulostulosignaali on signaalinprosessoinnin näkökulmasta paljon käytännöllisempi. Alaspäin taajuusmuuntavan mikserin tulee pystyä vahvistamaan laajaa skaalaa erivahvuisia signaaleja, minkä ylärajaa mittaamme 1 dB kompressiopisteellä. Radiolaitteistossa kohinaluku tulee yleensä myös ottaa huomioon, mutta johtuen mikserin sijainnista vastaanotinketjussa, kohinaluku vaimenee suhteessa sitä edeltävien vahvistuksien verran, eikä siksi ole niin kriittinen. Tämä diplomityö esittelee lukijalle ensiksi alaspäin muuntavan taajuussekoittimen perusteorian, toisena sen teoreettisen piirikaavion suunnittelun sekä sen simuloinnin tuloksia, ja viimeisenä fyysisen layoutin suunnittelun sekä sen simuloinnin tulokset. Fyysisen layoutin suunnittelu ja simulointi tehdään käyttäen GlobalFoundries 22nm FDSOI teknologiaa. Suunnittelu tehdään suoramuunnosvastaanottimelle käyttäen Gilbertin solu topologiaa, eliminoiden peilitaajuuksista aiheutuvat ongelmat, sekä vähentäen kohinan sekä ei-haluttujen signaalien läpivuotojen vaikutusta. Sekoittimen tulee muuntaa 151 GHz signaali n. 0–1 GHz kantataajuudelle käyttäen LO-signaalia taajuusvälillä 150–151 GHz. Lopullisissa tuloksissa vertaillaan kahta eri iteraatiota. Ensimmäisenä versiota, joka luotiin alun perin teoriapohjaisen piirisuunnittelun pohjalta, sekä toista versiota, missä useilla parannuksilla mikserin suorituskykyä saatiin parannettua. Korkeaimpedanssista 500 Ohmin kuormaa ajaessa mikseri ylsi -10.0 dB vahvistukseen, 1 dB kompressiopiste oli 6.4 dB kuluttaen 4.7 mW virtaa käytössä. Kohinaluvuksi simuloitiin 17.3 dB, sekä LO signaalin vuodosta IF lähtöön oli -27.7 dBm

    Effect of Substrate Contact Shape and Placement on RF Characteristics of 45 nm Low Power CMOS Devices

    No full text
    The substrate resistance of 45 nm CMOS devices shows a strong dependence on the distance between the device edge and the substrate ring; as well as on the number of sides that the device is surrounded by the contact ring. We find that the unilateral gain is impacted by the substrate resistance (R[subscript sx]) through the gate-body capacitance feedback path at low to medium frequencies (< 20 GHz). At mm wave frequencies, the unilateral gain is affected by the R[subscript sx] through the drain-body capacitance pole, and deviates from the ideal -20 dB/dec slope. The impact of substrate resistance on f[subscript T], maximum available gain, high frequency noise and power characteristics of the devices is minimal

    Reducing signal coupling and crosstalk in monolithic, mixed-signal integrated circuits

    Get PDF
    Master of ScienceDepartment of Electrical EngineeringWilliam B. KuhnDesigners of mixed-signal systems must understand coupling mechanisms at the system, PC board, package and integrated circuit levels to control crosstalk, and thereby minimize degradation of system performance. This research examines coupling mechanisms in a RF-targeted high-resistivity partially-depleted Silicon-on-Insulator (SOI) IC process and applying similar coupling mitigation strategies from higher levels of design, proposes techniques to reduce coupling between sub-circuits on-chip. A series of test structures was fabricated with the goal of understanding and reducing the electric and magnetic field coupling at frequencies up to C-Band. Electric field coupling through the active-layer and substrate of the SOI wafer is compared for a variety of isolation methods including use of deep-trench surrounds, blocking channel-stopper implant, blocking metal-fill layers and using substrate contact guard-rings. Magnetic coupling is examined for on-chip inductors utilizing counter-winding techniques, using metal shields above noisy circuits, and through the relationship between separation and the coupling coefficient. Finally, coupling between bond pads employing the most effective electric field isolation strategies is examined. Lumped element circuit models are developed to show how different coupling mitigation strategies perform. Major conclusions relative to substrate coupling are 1) substrates with resistivity 1 kΩ·cm or greater act largely as a high-K insulators at sufficiently high frequency, 2) compared to capacitive coupling paths through the substrate, coupling through metal-fill has little effect and 3) the use of substrate contact guard-rings in multi-ground domain designs can result in significant coupling between domains if proper isolation strategies such as the use of deep-trench surrounds are not employed. The electric field coupling, in general, is strongly dependent on the impedance of the active-layer and frequency, with isolation exceeding 80 dB below 100 MHz and relatively high coupling values of 40 dB or more at upper S-band frequencies, depending on the geometries and mitigation strategy used. Magnetic coupling was found to be a strong function of circuit separation and the height of metal shields above the circuits. Finally, bond pads utilizing substrate contact guard-rings resulted in the highest degree of isolation and the lowest pad load capacitance of the methods tested
    corecore