1,346 research outputs found

    Effect of inverted index partitioning schemes on performance of query processing in parallel text retrieval systems

    Get PDF
    Shared-nothing, parallel text retrieval systems require an inverted index, representing a document collection, to be partitioned among a number of processors. In general, the index can be partitioned based on either the terms or documents in the collection, and the way the partitioning is done greatly affects the query processing performance of the parallel system. In this work, we investigate the effect of these two index partitioning schemes on query processing. We conduct experiments on a 32-node PC cluster, considering the case where index is completely stored in disk. Performance results are reported for a large (30 GB) document collection using an MPI-based parallel query processing implementation. © Springer-Verlag Berlin Heidelberg 2006

    Performance comparison of clustered and replicated information retrieval systems

    Get PDF
    The amount of information available over the Internet is increasing daily as well as the importance and magnitude of Web search engines. Systems based on a single centralised index present several problems (such as lack of scalability), which lead to the use of distributed information retrieval systems to effectively search for and locate the required information. A distributed retrieval system can be clustered and/or replicated. In this paper, using simulations, we present a detailed performance analysis, both in terms of throughput and response time, of a clustered system compared to a replicated system. In addition, we consider the effect of changes in the query topics over time. We show that the performance obtained for a clustered system does not improve the performance obtained by the best replicated system. Indeed, the main advantage of a clustered system is the reduction of network traffic. However, the use of a switched network eliminates the bottleneck in the network, markedly improving the performance of the replicated systems. Moreover, we illustrate the negative performance effect of the changes over time in the query topics when a distributed clustered system is used. On the contrary, the performance of a distributed replicated system is query independent

    A parallel framework for in-memory construction of term-partitioned inverted indexes

    Get PDF
    Cataloged from PDF version of article.With the advances in cloud computing and huge RAMs provided by 64-bit architectures, it is possible to tackle large problems using memory-based solutions. Construction of term-based, partitioned, parallel inverted indexes is a communication intensive task and suitable for memory-based modeling. In this paper, we provide an efficient parallel framework for in-memory construction of term-based partitioned, inverted indexes. We show that, by utilizing an efficient bucketing scheme, we can eliminate the need for the generation of a global vocabulary. We propose and investigate assignment schemes that can reduce the communication overheads while minimizing the storage and final query processing imbalance. We also present a study on how communication among processors should be carried out with limited communication memory in order to reduce the total inversion time. We present several different communication-memory organizations and discuss their advantages and shortcomings. The conducted experiments indicate promising results. © 2012 The Author. Published by Oxford University Press on behalf of The British Computer Society

    Toward Entity-Aware Search

    Get PDF
    As the Web has evolved into a data-rich repository, with the standard "page view," current search engines are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data "entities" (e.g., phone number, paper PDF, date), today's engines only take us indirectly to pages. In my Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant departure from traditional document retrieval. We study the various essential aspects of supporting entity-aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is able to seamlessly integrate both local and global information in ranking. We also report a prototype system built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential computation requirements of entity search. From the dual views of reasoning--entity as input and entity as output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient and scalable query processing. Further, to recognize more entity instances, we study the problem of entity synonym discovery through mining query log data. The results we obtained so far have shown clear promise of entity-aware search, in its usefulness, effectiveness, efficiency and scalability

    SparkIR: a Scalable Distributed Information Retrieval Engine over Spark

    Get PDF
    Search engines have to deal with a huge amount of data (e.g., billions of documents in the case of the Web) and find scalable and efficient ways to produce effective search results. In this thesis, we propose to use Spark framework, an in memory distributed big data processing framework, and leverage its powerful capabilities of handling large amount of data to build an efficient and scalable experimental search engine over textual documents. The proposed system, SparkIR, can serve as a research framework for conducting information retrieval (IR) experiments. SparkIR supports two indexing schemes, document-based partitioning and term-based partitioning, to adopt document-at-a-time (DAAT) and term-at-a-time (TAAT) query evaluation methods. Moreover, it offers static and dynamic pruning to improve the retrieval efficiency. For static pruning, it employs champion list and tiering, while for dynamic pruning, it uses MaxScore top k retrieval. We evaluated the performance of SparkIR using ClueWeb12-B13 collection that contains about 50M English Web pages. Experiments over different subsets of the collection and compared the Elasticsearch baseline show that SparkIR exhibits reasonable efficiency and scalability performance overall for both indexing and retrieval. Implemented as an open-source library over Spark, users of SparkIR can also benefit from other Spark libraries (e.g., MLlib and GraphX), which, therefore, eliminates the need of usin

    Signature Files: An Integrated Access Method for Formatted and Unformatted Databases

    Get PDF
    The signature file approach is one of the most powerful information storage and retrieval techniques which is used for finding the data objects that are relevant to the user queries. The main idea of all signature based schemes is to reflect the essence of the data items into bit pattern (descriptors or signatures) and store them in a separate file which acts as a filter to eliminate the non aualifvine data items for an information reauest. It provides an integrated access method for both formattid and formatted databases. A complative overview and discussion of the proposed signatnre generation methods and the major signature file organization schemes are presented. Applications of the signature techniques to formatted and unformatted databases, single and multiterm query cases, serial and paratlei architecture. static and dynamic environments are provided with a special emphasis on the multimedia databases where the pioneering prototype systems using signatnres yield highly encouraging results
    corecore