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Abstract

One of the greatest challenges in information retrieval is to develop an intelligent system
for user and machine interaction that supports users in their quest for relevant information.
The dramatic increase in the amount of Web content gives rise to the need for a large-
scale distributed information retrieval system, targeted to support millions of users and
terabytes of data. To retrieve information from such a large amount of data in an efficient
manner, the index is split among the servers in a distributed information retrieval system.
Thus, partitioning the index among these collaborating nodes plays an important role in
enhancing the performance of a distributed search engine. The two widely known inverted
index partitioning schemes for a distributed information retrieval system are document
partitioning and term partitioning.

In this thesis, we introduce the Document over Term inverted index distribution scheme,
which splits a set of nodes into several groups (sub-clusters) and then performs document
partitioning between the groups and term partitioning within the group. As this approach
is based on the term and document index partitioning approaches, we also refer it as a
Hybrid Inverted Index. This approach retains the disk access benefits of term partitioning
and the benefits of sharing computational load, scalability, maintainability, and availability
of the document partitioning. We also introduce the Document over Document index par-
titioning scheme, based on the document partitioning approach. In this approach, a set of
nodes is split into groups and documents in the collection are partitioned between groups
and also within each group. This strategy retains all the benefits of the document parti-
tioning approach, but reduces the computational load more effectively and uses resources
more efficiently.

We compare distributed index approaches experimentally and show that in terms of
efficiency and scalability, document partition based approaches perform significantly bet-
ter than the others. The Document over Term partitioning offers efficient utilization of
search-servers and lowers disk access, but suffers from the problem of load imbalance. The
Document over Document partitioning emerged to be the preferred method during high
workload.
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Chapter 1

Introduction

“Information retrieval (IR) is a field concerned with the structure, analysis, organization,
storage, searching, and retrieval of information” [40]. Further, IR is the science of search-
ing for documents, for information within documents and for metadata about documents,
as well as that of searching relational databases and the World Wide Web (WWW). IR
systems involve a range of tasks and application. The usual search scenario (task) involves
user typing in a query and receiving answers in the form of a list of documents. Searching
information is a crucial part of application in corporations, government and many other
domains like vertical search, enterprise search, desktop search, and peer-to-peer [36]. How-
ever, searching the WWW is by far the most common application involving IR systems.
The users rely on a IR application like Web search engine to navigate through ever evolving
ocean of Web data. In this thesis, we focus on a Web search engine application of IR.

In the context of the Web, data continues to grow at an ever increasing rate. Millions of
Web pages are created every year. In 1992, there were just 1000 pages on the Web. In 1999,
the estimated indexable Web size increased to 800 million pages [24]. As of June 2000,
over two billion Web pages were posted on the internet. In August 2005, Yahoo! disclosed
the number of indexable Web pages as 19.2 billion documents [28]. As amount of data is
in the order of petabytes and growing exponentially, sophisticated techniques are required
to implement an efficient IR system. A typical search engine is hosted by a centralized
machine and the index is replicated across several machines. Such large centralized systems
are not capable of handling increasing number of users and volume of the data. This gives
rise to the need for a parallel and distributed search engine. The main challenge here is
to design a large scale distributed search engine that satisfies the user’s expectations and
at the same time uses resources efficiently, thereby reducing the cost per query. This is
possible only by efficient usage of the network, caching and high concurrency.

In this chapter, we first present the architecture of a typical search engine in Section 1.1.
In Section 1.2, we discuss about architecture of a traditional monolithic search engine along

1



Figure 1.1: Architecture of Search Engine.

with its limitations followed by distributed search engine. In Section 1.3, we discuss various
index partitioning approaches for a distributed search engine and their shortcomings. In
Section 1.4, we give the formal description of the problem. Finally we state the main
contributions of this thesis.

1.1 Architecture of Search Engine

In this section, we present a high level abstraction of various components of a search engine.
A search engine consists of three core components: crawling, indexing, and query process-
ing. A brief description of each component is given below. Explaining all components in
detail is beyond the scope of this thesis but more information can be found in [4, 16, 40].

A crawler is a program that identifies and acquires documents from the Web by fol-
lowing the hyper-links. It is also known as spider, walker and wanderer. Crawlers begin
with an initial set of URL’s (Uniform Resource Locator) as input to scan and download
their content and store it for further processing in a page repository (data store). Then
crawlers proceed iteratively following all the outgoing links extracted from the already
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downloaded Web pages in order to acquire more content. This process is repeated until
the crawler runs out of seeds (URL’s), bandwidth, or storage-space. The crawler down-
loads Web pages of various formats like HTML, XML, PDF, and Microsoft-word, etc. from
various sources like database servers, file servers, Web servers, or database-driven content
management systems. Most search engines require these documents to be converted into
some consistent format, mainly plain text [40].

Before advancing to the indexing phase; text-transformation and content analysis is
carried out on each page stored in the page repository as shown in Figure 1.1. Text-
transformation mainly deals with parsing, stopping, stemming, and content analysis. The
parser is responsible for processing the text by first tokenizing and then recognizing struc-
tural elements of the page such as titles, figures, links, and headings. As the query is
compared against same set of documents, both the query and the documents must be to-
kenised using the same parser. The parser must also ignore stopwords while tokenizing1.
A stopword is a common word that helps to form a sentence but contributes little meaning
on their own to the text. Thus, it is believed that removing stopwords usually has no im-
pact on the search engine’s effectiveness [36]. Some of the examples of stopwords are “of”,
“to”, and “the”. Further, removing stopwords reduces the size of the index. Stemming
is another text-level transformation, that groups similar words derived from a common
stem and replaces them with one designated word. For instance, “stemmer”, “stemming”,
“stemmed” are based on “stem” and should be replace by a designated word ”stem”.

The content analysis component deals with the extraction of metadata from a document.
Metadata is the information about the document and is not a part of the text. Examples
of metadata include: document type, length, and author. The content analysis component
also extracts links and anchors text from Web pages. Document metadata, links, and
anchor text are stored as structured data into a datastore. Query processing and ranking
components of the search engine make extensive use of such structured information. Links
identified by the content analysis component are again fed to the crawler(s).

The output of the text transformation component becomes input to the indexing com-
ponent, which creates index data structures that enable fast searching. Considering the
size of the Web, index creation must be efficient, both in the terms of the time taken to
create the index and time to search against the index. Further, it should be possible to
efficiently update the index when new documents are acquired or when existing documents
are updated.

All modern search engines are using inverted index data structures. Other index struc-
tures have been used in the past are signature files, and spatial data structures such as
k-d tree. Explaining all the different types of index structures used by a search engine is
beyond the scope of this thesis but more information can be found in [4, 16]. An inverted

1The process of removing stopwords from the text is known as stopping in IR.
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index is similar to a book index, it consists of two types of data structures, namely lexicon
and postinglists. Lexicon is a collection of unique words or tokens extracted from the text.
Each lexicon, which is also known as index term or token, is assigned a list representing
documents containing that particular index term. A postinglist contains the information
about the location of the occurrence of a token in the collection. An index stores more
information than just a list of documents containing that particular index term such as the
frequency of the term in the document, and the section of the document (title, abstract,
content) where that term appears. Such information are extensively used by the ranking
component to compute the weight of a particular term in the document. Inverted index
data structure is considered the most efficient and the most flexible index structure in IR
engines. [4, 16, 40, 43].

A query received from the user is transferred to a query processing component, which
acts as an interface between the user and the search engine. One of the tasks for this
component is to accept user queries and transform each query into index terms. This
includes refining a vague or misspelled query. Further, searching is becoming increasingly
complex. A query may include phrases, questions, whole passages, or documents. Thus,
another task of the query processing component is to deliver consistently superior results
by understanding the exact intent of the user query. Query processors must also know
what information is available, how it relates to the query, and where it is located. The
ranking component takes the output of the query processing (which is list of documents),
scores the list of documents, and send it to the broker which in turn sends the results to
the users. The task of generating presentable results to user is carried out by the broker.

1.2 Monolithic vs. Distributed Search Engine

The search engine architecture presented in the previous section can be implemented in a
centralized or a distributed fashion. The traditional “monolithic search engine” employs
centralized single large index architecture as shown in Figure 1.2. The crawler(s) are used
to download the desired content from various sources and store them in the repository. The
downloaded content is then converted into a single large index by the indexing component
of the search engine. Once indexed, the search application on the search-server facilitates
search against the single large index and returns consolidated results to the user. An IR
server2 may have more than one core information retrieval process running; for instance,
the searcher process (responsible for search operation) and the indexer process (responsible
for creating index on data) can run on the same server.

A major benefit of a monolithic search engine is that it is easy to manage a single large
index and have simple query processing algorithms. On the other hand, as the volume

2IR server is also referred as search-server, node, or simply server in this thesis.
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Figure 1.2: Logical organization of Monolithic Search Engine.

of the electronic data and number of query requests increases, it is nontrivial to perform
basic IR tasks (such as indexing and searching) on a single machine efficiently. Searching
and indexing costs grow with the size of data collection. Moreover, the monolithic search
engines neither have the computational power nor storage capabilities to deal with the
large data collection and the increasing number of users. Scalable distributed IR system
aim to anomer most of the above issues.

Parallel and distributed IR systems typically consist of a set of core IR server processes,
like an indexer and a searcher along with a crawler. Such systems are usually deployed
on a large cluster of nodes, each of which is responsible for searching index. Figure 1.3
shows the logical organization of the distributed search engine. Along with deploying the
IR application on a large cluster, we usually need replication to improve the performance
of a parallel IR system. Consider that we have n search-servers in the cluster. By creating
n replicas of the index and assigning each replica to a different node, we can increase
throughput of the service by a factor of n because multiple queries can be processed in
parallel. Such parallelism can improve the service rate (throughput) but does not improve
query latency.

In this thesis, we focus on another popular approach to optimize the performance. In
this approach, we split the index into n parts and have each node work only on its assigned
part of the index. This is referred as intra-query parallelism in the literature [36]. In
such distributed IR systems, a designated process known as the broker or receptionist is
responsible for accepting user query request. It then forwards each user query to all or some
search-servers. All participating servers will process the query and send partially discovered
results to the broker. After accumulating all the results received from the participating
search-servers, the broker sends the final top-k results3 to the user. As each search-server
is responsible for only a small part of the index and as queries are evaluated in parallel,
such system improves throughput as well as query latency.

3List of k most query relevant documents.
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Figure 1.3: Logical organization of Distributed Search Engine.

In a distributed IR system, performance is highly influenced by the way in which
the index is partitioned across the search-servers [10]. Two standard techniques for in-
dex organization in a distributed environment are document partitioning (DP) and term
partitioning (TP) [16, 40, 36]. In document partitioning, the data collection is parti-
tioned among the search-servers and each search-server hosts an inverted index for its
assigned subset of the documents. For instance, consider a data collection with documents
D={d1, d2, d3, d4, d5, d6, d7, d8} partitioned among the search-servers such that search-server1
handles documents {d1, d2, d3}, search-server2 handles {d4, d5, d6}, and search-server3 han-
dles {d7, d8}. An inverted index created by search-server3 is as follows:

< t1,3, L1,3 > where L1,3 = {d8},
< t4,3, L4,3 > where L4,3 = {d8},
< t5,3, L5,3 > where L5,3 = {d7},

< t7,3, L7,3 > where L7,3 = {d7, d8}

where tij is the term ti located on search-server-j and Lij is the list of documents with
term ti located on search-serverj.

One of the main advantages of DP is that it is simple and easy to manage as a result
of two factors. Firstly, insertion of a new document is trivial as each document is stored
on the single search-server. Secondly, the query processing on each search-server is done

6



Figure 1.4: Term and document inverted index partitioning.

independently of others. In addition, DP supports availability as query evaluation is un-
interrupted even if one of the search-servers becomes unavailable, of course with a loss of
some effectiveness4. However, this approach incurs a disk access overhead. For instance,
for n search-servers and q query terms, n ∗ q inverted lists must be fetched5. Another
drawback of DP is that the search-servers execute several unnecessary operations when
querying a sub-collection, which may contain only few or no relevant documents. Only
top-k documents relevant to the query from n ∗ k documents retrieved by n search-servers
are transferred to the user by the broker, hence some of the computation done by the
search-servers is futile and results in an increase in the intercommunication and overhead
on the broker.

Alternative to DP is TP. A TP approach creates an index on the entire collection and
then range partitioned the inverted list by terms among the search-servers. Following the
previous example, consider the same data collection with the set of documents, D. The
inverted index stored on the search-server3 is as follows:

< t6, L6 > whereL1 = {d2, d6}
< t7, L7 > whereL2 = {d3, d4, d7, d8}

where ti is the term in the vocabulary and Li is list of documents containing the term ti.

4Effectiveness measures the ability of the search engine to find the right information. The two most
common effectiveness metrics are recall and precision.

5Additional disk seek are in parallel and each server only do q disk-seek.
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A major drawback of the TP approach is an uneven distribution of the load across
the search-servers, i.e., it is vulnerable to hotspots. This affects the throughput. Also,
this approach does not scale well because inserting a new document requires the index
to be updated on all the search-servers. Another problem is that as each search-server is
responsible for a certain set of terms, Tn from the vocabulary, unavailability of a search-
server will halt the query processing for the terms stored on the unavailable search-server.
Further, for query processing, postinglists are often required to be transferred over the
network to the broker resulting in an increase in the intercommunication cost. There
are, however, some advantages of this approach in the query processing phase as query is
forwarded only to the search-servers which contains postinglist(s) for the query term(s).
Thus, it significantly reduces disk access and volume of data exchanged (between the disk
and main-memory) resulting in an efficient utilization of the resources.

1.3 Problem Statement

The volume of the Web and the number of queries submitted to a Web search engine by the
users make inverted indexes partitioning a critical issue for the performance. In an ideal
scenario, what we want to achieve from a search engine is that (i) it should be scalable
with respect to the size of the data collection and resources, (ii) it must support efficient
resource utilization by avoiding hotspots and distributing load evenly among the available
resources, and (iii) it should maintain availability at all times, without compromising on the
performance (effectiveness and efficiency6). The two index partitioning strategies we have
named so far (TP and DP) cannot address all the above mention scenario collectively.
Therefore we propose a hybrid and optimized index partitioning approach that makes
decision based on all these four attributes: high performance, scalability, availability, and
resource utilization.

1.4 Main Contributions of the Thesis

The main contribution of this thesis can be summarized as follows:

• We present the document over document partitioning strategy for a distributed search
engine which is based on the DP approach.

• We present a new hybrid approach based on the term and document partitioning
which support scalability, availability, and efficient utilization of the resources. We

6 Efficiency measures how quickly things get done. The two most common efficiency metrics are
throughput and query latency.
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show experimentally that the postinglist pruning technique for the hybrid index par-
titioning approach can improve the performance.

• We provide insight on how to measure throughput in a steady state. We also compare
the time taken by different approaches to reach the steady state by varying the
number of simultaneous query requests.

• We discuss the effect of concurrency on different inverted index organization ap-
proaches. One of our goals is to devise an inverted index partitioning strategy which
supports higher concurrency with minimum effect on the throughput and latency.

1.5 Organization of the Thesis

The organization of the rest of the thesis is as follows. Chapter 2 describes related work
and describes various strategies used to tackle IR system problems stated in Section 1.2. In
Chapter 3, we present the approach developed to tackle the problem. We analyze various
methods for efficiency in Chapter 4 and conclude with directions on future work in Chapter
5.
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Chapter 2

Related Work: Distributed Inverted
Indexing Techniques

As outlined in Section 1.2, the inverted index of a large document collection can be dis-
tributed across the cooperating search-servers in two different organizations: document
partitioning and term partitioning. In this chapter, we describe in detail document parti-
tioning in Section 2.1 and term partitioning in Section 2.2 followed by a comparative study
presented in the literature in Section 2.3. We discuss various optimization performed on
both approaches in Section 2.4. We describe various hybrid approaches presented in the
literature in Section 2.5.

2.1 Document Partitioning (DP)

The idea behind the DP approach is to partition the data collection into several smaller
sub collections, one per server, and build an inverted index on that sub-collection. In the
literature, DP is also known as horizontal partitioned index or local index. The DP approach
is the most commonly used approach by a distributed Web search engine [4, 7, 8, 13]. An
incoming user query is received by the frontend server; also known as the broker, which
schedules the query on the search-servers based on the scheduling strategy. In DP, the
broker may choose among two possible strategies for scheduling a query. The more common
approach is to broadcast the query to all the underlying search-servers [18]. As all the
search-servers are involved in the execution of the query, this method has the advantage of
enabling an even load balance among all the search-servers [29]. On the other hand, it has
a major drawback of processing the query submitted by the user on all the search-servers,
resulting in many random disk access.
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Another query scheduling schema is to forward the query only to the search-server(s)
that contains a relevant document(s). Thus, we select only a subset of the machines in the
cluster. The problem of selecting such a subset is challenging and is known as “collection
selection” and is described in more detail in Section 2.4.1. Moreover, the performance
of the collection selection strategy depends on how documents are partitioned among the
search-servers. Various data collection partitioning strategies are described in more detail
in Section 2.4.1.

Despite its disadvantages due to inefficient utilization of the resources and disk access
problem, DP has several advantages which make it a favorable choice. Some of these
advantages are listed below:

• Locality: In DP, all the search-servers operate independently of each other because
each search-server has self contained search index. Thus, the main advantage of this
approach is its simplicity as it can be easily deployed on a loosely coupled environ-
ment. This locality is extremely convenient for query processing because complex
queries can be conveniently solved, as the comparisons between the postinglists of
the query terms to find relevant set of documents is local. Moreover, the index is
easy to maintain since insertion of a document is done locally.

• Dynamic Index: So far we have assumed that indexing is a batch process. However,
in practice, most of the documents are constantly changing and updated. Also the
collection tends to get bigger over the time as every day there is more news and
more emails. Thus, we require that the index partitioning techniques must be able
to respond to any dynamic collection efficiently without affecting the performance of
the system. We can solve this problem with two techniques, index merging and result
merging. In index merging, we make a new smaller index I2 and merge it with the
old index, I1 to make a new index I. This is a reasonable update strategy when index
updates comes in a large batch. For a single or a small batch update, it is not a good
strategy. For these small updates, it is better to maintain small separate index, I2
for a new data and delay merging until the second index becomes sufficiently large.
User queries are evaluated against both indexes, I1 and I2, and later, the results are
merged to find top-k results. This is called result merging. The DP can adapt to
index merging and to result merging without any complication because each node
operates independently.

• Scalability: In the case of distributed IR systems, scalability must address two
issues, (1) adding new node(s) to an existing system, and (2) adding new data to
an already existing node with minimum effect on the performance while maintaining
the availability of the system. As the collection becomes larger, the sub-collections
of each node and index will also become larger. Larger index increases computation
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cost on a search-server. In such case, adding an extra node(s) seems to be more
feasible alternative. As mentioned earlier, in DP it is easy to add new node(s)
without effecting the availability and with reasonable affect on the performance, as
there is no internodal dependency. Further, addition of a new document requires
index update only on the node where document is added or changed.

• Availability: As the DP approach can be deployed on a loosely coupled environ-
ment, query evaluation can proceed even if one of the search-servers is unavailable.
However, this might result into loss of effectiveness considering possibility of unavail-
able server containing most relevant query result(s).

• Load Balancing: Majority of the proposed strategies in the literature adopts
straight forward approach where documents are randomly partitioned among the
search-servers. We have seen that with random distribution, average load is smooth
in the case of DP [29], but does not guarantee an even load. There is not much
work in the area of load balancing in DP. However, DP has been shown by many
researchers to be the best choice among parallelization schema [36].

2.2 Term Partitioning (TP)

The idea behind the TP is to create an index on the entire collection and then to range
partition the lexicon and the corresponding array of the postinglists among the nodes. In
the literature, TP is also known as vertical partitioned index or global index organization.

Although DP is the most commonly used index partitioning technique, it can reveal
its potential only if the index is stored on low latency devices, such as main memory or
flash memory. The TP deals with the disk access problem by dividing the index by terms
instead of by documents. In TP, each search-server nj is responsible for a certain set of
terms Ti,j. A node participates in a query processing only if one or more terms from that
query belongs to the set Ti,j of the node nj. Thus, the numbers of disk access in the case
of term partitioned index are fewer as compared to the document partitioned index.

Although TP has some advantages over DP, it has several limitations which constrains
it from being used in practice. Some of these limitations are listed below:

• Complexity The execution of a multi-word query is complex as it requires both
transfer of long postinglists between the nodes and merging them. Further, in TP,
adding or updating documents might require the index to be update which might be
spread across different servers making it a complex operation.
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• Dynamic Index: Usually, indexes are rebuilt from scratch after the update of the
documents. But it might not be the case for special document collection like news
articles or blogs, where updates are very frequent. This can affect the performance
of the system since update operation requires locking of index using a mutex. This
problem worsens in the case of TP, as postinglists of terms that are required to be
updated might be spread across many nodes. Instead of creating the entire index
again, Ribeiro-Neto et al., [35] presented better approach to generate term partitioned
index in which each server needs to separately index a disjoint part of the collection,
and then negotiate and execute a set of pairwise exchange of the postinglists. Either
way, is more complex and requires extra processing as compared to the document
partitioned index.

• Scalability: As stated in Section 2.2, for scalability, system must be able to address
two issues: adding a new node to the existing system and adding a new document
to an already existing node with minimum effect on the performance and availability
of the system. In the case of TP, it is easy to add new nodes and copy index to the
newly added node without affecting the availability and performance. However, this
dynamic structure for adding new documents or updating the existing documents
constraints the capacity and response time of the system as we previously explained
in the case of dynamic index.

• Availability: In the case of TP, unavailability of search-server(s) will halt the query
processing for queries containing term present on unavailable server.

• Load Imbalance: The TP suffers from load imbalance among the search-servers.
Load balancing of a partition is not governed by a prior analysis of relative term
frequency, but rather by the distribution of the query terms and their co-occurrence,
which can drift with time. For instance, if a term has a long postinglist and appears
more frequently in the search query, then the corresponding index node may experi-
ence much higher load than any other nodes in the distributed search engine. This
can drastically affect the performance of the system. Moffat et al. in [29] tries to
address this problem of load balancing on the term partition index. They showed
that it is possible to balance the load on the term partitioned index by exploiting the
information on the frequency of the terms occurring in the query logs.

2.3 Comparison between Term Partitioning and Doc-

ument Partitioning

Barla et al. [10] investigated the performance of the TP and DP with respect to the
response time and throughput on MPI-based parallel query processing implementation.
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They measured the difference in the performance of both the approaches by varying the
number of terms in the query and cluster size. Their result indicates that the throughput
is better in TP than DP in the case of batch queries. They also concluded that TP achieves
better throughput than the DP as the number of nodes in the cluster increases.

Jeong and Omiecinski [21] investigated the performance of the two inverted index parti-
tioning strategies on a shared-everything multiprocessor machine with multiple disk. They
investigated the performance in a simulated environment with different workloads gener-
ated by varying the terms frequency in the document and query and also by varying the
number of disk and multiprogramming level. The result of their simulation shows that the
term based partitioning is better in terms of throughput when the term distribution is less
skewed, whereas DP performs better when the terms are highly skewed.

Yates et al. in [2] investigated the two partitioning techniques on a share-nothing
parallel system. Their result demonstrates that TP performs better than DP in terms
of throughput in the presence of a fast communication link and a more powerful broker.
Nevertheless, as stated in [3], although DP and TP have been widely studied, it is still
unclear on the circumstances under which each one is suitable.

2.4 Optimizing Inverted Index Partitioning Strate-

gies

In practice, neither the TP nor DP approach is used without additional optimization.
In this section we first present some of the work done in the literature to optimize the
performance of the DP and TP techniques.

2.4.1 Optimizing Document Partitioning Approach

For an optimized document partitioned IR system, the major goal is to partition the index
such that the number of contacted servers is minimal, resources are utilized efficiently,
and there is an even distribution of load among the search-servers by avoiding hotspots.
To achieve these goals, it is necessary to minimize the number of servers contacted for
query processing by sending queries only to the servers which contain the relevant docu-
ments. Such problem in literature is known as the collection selection problem. Minimizing
the number of servers contacted for the query processing depends on how documents are
partitioned among the servers.
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Partitioning Data Collection

Deciding how to divide the collection to create good document clusters is complex. The
majority of the proposed approaches in the literature adopt a simple approach, where
documents are randomly partitioned among the servers, and each query is evaluated by
all the servers. However, distributing documents randomly across the servers does not
guarantee an even load distribution [1]. Further, random distribution of the document
results in an inefficient utilization of the resources. This is because a server may execute
several operations unnecessarily when querying the sub-collection, which may contain only
few or no relevant documents.

Different approach is adopted by the peer-to-peer (P2P) IR systems where users inde-
pendently collect documents of their interest. The document collections generated in such a
manner are overlapping, redundant, incomplete, and limited to peer’s interest. Further, as
partitioning is done on an interest basis, smart collection selection approach is required to
route the query to the appropriate peer, which contains query relevant documents. Many
peer-to-peer IR systems are presented in the literature [31, 38, 42]. The P2P-IR systems
cannot guarantee high performance because most of the time all peers participate in the
query processing as the document collection is partitioned inefficiently.

The query log is a vital source of information which can help to create a good document
clusters. Puppin et al. [33] presented a naive strategy to cluster documents according to
the information coming from a query log. The approach is explained briefly in the next
section.

Bhagwat et al. in [5] presented an approach based on a feature based clustering of
the documents. When a document is ingested into the repository, a small number of
partitions are chosen to store the features of the document. The authors presented new
data structures called feature indices for all the documents in the repository. The index
key is the feature itself. Each feature points to the list of files that it occurs in. The
decision as to which partitions the document should be routed to (for storing at ingestion
time, and for similarity based search at query time) is solely based on the features of the
document or query.

Another approach is to do content based or topic base document clustering. As stated
by Puppin et al. in [33],

pSearch [39] performs an initial LSI(Latent Semantic Indexing) transforma-
tion that is able to identify concepts out of the document base. LSI works by
performing a Singular Value Decomposition (SVD) of the document-term ma-
trix, which projects the term vector onto a lower-dimensional semantic space.
Then, the projected vectors are mapped onto a Content Addressable Net-
work(CAN) [34]. Search and insertion is done using the CAN space. In other
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words, when a query is submitted, it is projected, using the SVD, onto the
CAN, and then neighbors are responsible for answering with the documents
they hold.

In [30], Patel proposed a document clustering strategy based on the document classifica-
tion technique namely Latent Semantic Indexing (LSI) [14] and Latent Dirichlet Allocation
(LDA) [6] using a query log which is explained later in the section. Although, LSI might
be computationally more efficient than most of the topic mixture models, but it is limited
to synonymy problem. It fails to address polysemy(same word with different meaning)
which is efficiently dealt by enhancement of LSI known as probabilistic latent semantic
indexing(pLSI) [19]. The most criticized shortcoming of pLSI, it is not a proper generative
model for new documents. This leads to generative model namely LDA, which immedi-
ately attracted a considerable interest from the statistical machine learning and natural
language processing communities. The basic generative process of LDA closely resembles
pLSI.

Collection Selection

Once the documents are partitioned (clustered), we need to devise an efficient collection
selection strategy that minimizes the number of servers contacted for a query processing.
Many approaches are proposed in the literature which deals with the collection selection
problem [33, 9, 17, 30, 5, 23, 26]. In [9], the authors presented a collection selection approach
based on a Bayesian probabilistic inference network called Collection Retrieval Inference
Network (CORI). In CORI, retrieval effectiveness is compared between the partitioned
collections. The CORI approach assumes that the best collections are the one that contains
most documents relevant to the query. The ranking of the collection is done based on an
inference network where the leaves represent document collection and intermediate nodes
represent the terms that occurs in the data collection. Their experiment shows that there
was no impact on the effectiveness (recall and precision) when compared with a centralized
IR system.

As stated earlier, Puppin et al. in [33] presented a strategy to partition a document
collection and to perform collection selection based on a query vector [32] which is derived
from the query log. They performed co-clustering on query vectors to group together
similar documents. Their results show that this technique outperforms CORI [9]. However,
their technique is biased because when a new document or query arrives they use TF.IDF
metric to decide which clusters are the best match (each dictionary file is considered as
a document, which is indexed with the usual TF.IDF technique). Their technique uses
simple text (lexical) matching approach, which is inherently inaccurate. This is because
there are many ways for a user to express a given concept using different words and also
because most of the words have multiple meanings.
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In [30], Patel proposed a strategy based on LSI for document clustering and collection
selection using query log. In this strategy, authors introduce the term-query-cluster matrix,
which is formulated from a query log where a row represents a term and a column repre-
sents a query-cluster (collection of similar queries derived from co-clustering algorithm).
The query-cluster were scored using vector model based on the normalized frequency. Since
in the models like “the term count model” and “classic vector space model,” the terms
with high occurrences are assigned more weight than the term occurring few times in the
documents and are vulnerable to keyword spamming. In such process, ranking and re-
trieval is compromised. These term vector models can be made less susceptible to keyword
spamming by normalizing frequencies [14, 32]. When a query is submitted to the broker,
strategy tries to find servers which contains most relevant documents based on similar-
ity between the query-clusters and query. Although this policy might be computationally
efficient, it is limited by limitation of LSI which fails to address polysemy.

2.4.2 Optimizing Term Partitioning Approach

For designing an optimized TP based IR system, the major goal is to partition the index
such that the load is equally spread across all the available servers; it must support scala-
bility and availability; it lowers the cost due to intercommunication; and the effectiveness
of results is not compromised. Moffat et al. [29] presented a new pipelining architecture
based on an optimized TP approach. In this architecture, queries(batch of query) are
processed in term at a time basis. As each query at any given time is processed by only
one node, pipelining architecture does not require intra-query communication, resulting in
higher response time.

Moffat et al. [29] concluded that a lack of natural load balancing in the pipelined
approach is a serious bottleneck and a random assignment of the terms to the servers is a
risk to the performance. To address this problem, the authors [29] showed that it is possible
to balance the load by exploiting the information on the frequency of the terms occurring in
the query log for distributing terms among the search-servers and for postinglist replication.
They considered the problem of partitioning the vocabulary in a TP as a bin-packing
problem (the bin packing problem is NP hard), where each bin represents a partition, and
each term represents an object to put in the bin. Experimental results shows that the
performance of a new pipelining approach benefits from the strategy since it is able to
distribute the load on each search-server more evenly than a traditional TP. However, it
is not good enough to outperform DP. It also has some advantages over DP as it offers
efficient memory utilization. Experiments also shows that DP achieves higher throughput
than the pipelining approach.

Perego et al. [26] showed that the knowledge mined from the query logs can be used
to feed the objective function for partitioning terms among the servers. The original bin-
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packing problem simply aims at balancing the weights assigned to the bins. In this case, the
objective function depends both on the single weights assigned to the terms (the objects)
and on the co-occurrences of the terms in the queries. The main goal of this function is
to assign co-occurring terms in the queries to the same index partition. This reduces both
the number of servers queried and the communication overhead. However, like TP, this
approach is not scalable as it requires building a central index.

2.5 Hybrid Partitioning

Kane and Tompa in [22] presented a comparative study between DP and TP and also in-
troduced a new hybrid partitioning technique. In their hybrid approach, machines are split
into groups and document distribution is used between the groups and term distribution
is used within the group. We refer this hybrid approach as ak-hybrid approach.Simulation
experiments showed that the ak-hybrid approach performed better than the TP and DP
approach. Like TP, ak-hybrid approach also requires entire postinglists of the query terms
to be transferred over the network within the group. Thus such approach cannot guaran-
tee high performance for a large data collection. Nevertheless, simulation does not take in
account the effect on the performance due to concurrent (multithreading) query requests.
The performance of multithreading is not only affected by the overlapping of memory la-
tency with useful computation, but it also strongly depends on the cache behavior and
the overhead of multithreading (e.g., thread management and context-switch costs). In
particular, multithreading affects the behavior of the caches and intercommunication, and
thus, the overall performance in a nontrivial fashion.

To counter the problem of load imbalance and to improve performance, Xi et al. [41]
proposed new hybrid partitioning approach in which the inverted list (postinglist) of a
term is divided into chunks of equal size1 and are randomly distributed among the nodes
as shown in the Figure 2.1. The query evaluation requires fetching all the chunks of all the
query terms by centralized machine, the broker. There is no clear advantage of such an
approach as the broker is still a uni-processor, processing all the queries and requires all
the chunks of all the query terms. Such an approach cannot guarantee high performance.

Figure 2.1 shows that all the chunks are required by the broker for query processing in
the case of their hybrid partitioning approach. For instance, query with terms a, b requires
transfer of inverted list from nodes 1,2,3, and 4 to some centralized machine (say a broker)
for the query processing.

With the above discussion, we aimed to discuss our index-partitioning strategy based
on [22] in details in the next chapter.

1All chunks are of equal size except for the last chunk which can be smaller.
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Figure 2.1: Inverted index partitioning schemes [41].
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Chapter 3

Hybrid Inverted Index Partition

In Section 3.1 and Section 3.2 of this chapter, we present and explore an alternative ap-
proach to index distribution, which tries to address the shortcomings of the term and
document partitioning presented in Chapter 2. In Section 3.3 we presents various design
knobs that affects the performance of these index partitioning approaches.

3.1 Document over Document Partitioning (DOD)

The document over document (DOD) partitioning approach is based on the DP approach,
but requires some of the search-servers to take extra responsibilities which relieves some
load on the broker. In DOD, we divide the search-servers in groups1 (sub-clusters) and the
data collection in smaller sub-collections. Once a sub-collection is assigned to each group,
the DP approach is adopted to divide documents among the search-servers in that group.
For instance, if we have total of 12 nodes in the cluster with a 300GB data collection, then
we can divide the nodes into 3 sub-clusters (4 search-servers each) and the data collection
into 3 sub-collections (100GB each). Each sub-collection is assigned to a group is document
partitioned among the search-servers in that group. Each search-server creates an index
for the assigned documents and is responsible for evaluating queries against that index.

In each sub-cluster, one of the search-servers acts as a head-search-server2. The head-
search-server takes extra responsibility of forwarding a query received from the broker to
the other search-servers in the group and sending the top results received from the search-
servers back to the broker.

1Group is interchangeably used with sub-cluster.
2It is possible to design a system where different query might have different head-search-server.
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Once the broker receives the query issued by the user, it is forwarded to the head-search-
server of all the participating sub-clusters. The head-search-server further broadcasts the
query to the search-servers. The search-server evaluates the query and sends the top-l
most relevant query results3 back to the head-search-server of their group. After receiving
the results from all the search-servers, the head-search-server forwards the top-r results
to the broker. Once the broker receives results from all the sub-clusters, it computes a
presentable list of top-k documents and forwards it to the user. The steps stated below
provide the details of the DOD approach to distributed query evaluation and Figure 3.1
illustrates how the query might be routed through the cluster.

1. Broker receives a query submitted by the user.

2. Each incoming query received by the broker first undergoes text-transformation, i.e.
parsing, removal of stop words, and stemming. This transformed query is then
forwarded to the head-search-server of all the sub-clusters.

3. Each head-search-server that receives the query performs the following tasks:

• obtains the information about active search-servers in the sub-cluster, and

• broadcasts the query to all the active search-servers in the group.

4. After receiving the query, each search-server

• fetches the postinglists for all the query terms stored in the index,

• computes the list of documents containing those terms and calculates the simi-
larity score, and then

• forwards a list of top-l documents to the head-search-server.

5. Once the head-search-server receives the list of top-l documents from all participating
search-servers for the query, it computes a list of top-r documents and forwards it to
the broker.

6. After receiving top-r results from all sub-clusters, the broker prepares a list of top-k
documents and forwards it to the user.

As a derivative of the DP approach, DOD inherits all the benefits of the DP approach.
For instance, DOD supports scalability, availability, maintainability, and even distribution
of load among the search-servers. However, the DOD tries to address some of the limitation
of the DP approach. Mainly, intercommunication cost and load on the broker is significantly
less in the case of DOD as a result of two factors. First, instead of all the search-servers

3The value of top-k and top-r are the same whereas the value of top-l is less than top-r.
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Figure 3.1: Query evaluation in DOD.
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as only the head-search-server of each sub-cluster forwards the list of results to the broker,
there is a significant decrease in the amount of data to be transferred to and processed by
the broker. Secondly, the load on each search-server is also reduced as each search-server
is not responsible to generate top-k results. On the other hand, the addition of an extra
layer between the broker and the search-servers results in extra overhead. However, this
overhead is the tradeoff made by the DOD design to gain performance advantage when the
workload is high as show in our experimental evaluation.

3.2 Document over Term Partitioning (DOT)

The term partitioning approach is practical for small data collections but becomes im-
practical if the data collection is too large, as the query processing cost is dominated by
the network cost. On the other hand, most widely used document partitioning techniques
become inefficient if the ratio “(document collection size)/(number of servers)” is too
small and disk accesses dominate the query processing cost [36]. Thus, the DOT design
adopts a middle ground approach as does the ak-hybrid approach [22], by first dividing
the larger data collection into smaller sub-collections, i.e. document partitioning, and then
applying the term partitioning on all the smaller sub-collections.

Like ak-hybrid approach, the DOT scheme splits a set of search-servers into groups and
then performs document partitioning between the groups and term partitioning within each
group. For instance, if we have a total of 12 nodes supporting a 300GB data collection,
then we can first divide the nodes into 3 sub-clusters (4 nodes in each sub-cluster) and
document partition the data collection into 3 sub-collections (100GB each). Each group
creates an index for its assigned sub-collection. This index is then range-partitioned by
terms among the search-servers of that particular sub-cluster. As this approach is based
on both the term and document partitioning approaches, we also refer to it as the Hybrid
Inverted Index scheme. Each search-server is responsible for evaluating the query against
the assigned range of term index. One of the search-servers in each group acts as the head-
search-server. The head-search-server takes up the extra responsibilities of forwarding the
query to other search-servers in the group and evaluating query after receiving postinglists
from the participating search-servers.

Although DOT is based on the ak-hybrid approach there are many differences between
the two. In the case of DOT, one of the search-server acts as a head-search-server in each
sub-cluster where as in the case of ak-hybrid there are none. In the case of DOT, small
chunks of pre-processed postinglists are transferred over the network to the head-search-
server for query processing whereas in the case of ak-hybrid approach, entire postinglists
are transferred to one of the search-server. In DOT, broker management is simple as the
broker simply broadcast the query to all the head-search-servers whereas in the case of the
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ak-hybrid approach, broker has to compute the routing list for each query and for each
sub-cluster.

In the case of DOT, once a query is received from the user, the broker forwards the query
to the head-search-server of each group. Each head-search-server extracts information
about the query terms from the vocabulary table and prepares a routing list of search-
servers responsible for those terms. The head-search-server forwards the query to the
search-servers on the routing list. Upon receiving the request, the search-server forwards
the postinglist(s) (of specific size) for the requested term(s) to the head-search-server.
After receiving all the requested postinglists, the head-search-server evaluates the query
and generates a list of top-r documents. This list is then forwarded to the broker. After
receiving g∗ top−r documents where g is the number of groups or sub-clusters in a cluster,
from all participating head-search-servers, the broker sends a list of top− k results to the
user. The steps stated below provides the details of the DOT approach to a distributed
query evaluation and Figure 3.2 illustrates how the query might be routed through the
cluster.

1. Broker receives a query submitted by the user.

2. Each incoming query received by the broker first undergoes text-transformation, i.e,
parsing, removal of stop words, and stemming. This transformed query is then
forwarded to the head-search-server of all the sub-clusters.

3. Each head-search-server that receives the query performs the following tasks:

• obtains the information for all the query terms from the vocabulary table to
identify the search-servers that store the relevant index information and prepares
a routing list of search-servers storing those terms, and then

• forwards the query to the active search-servers on the routing list in the sub-
cluster.

4. After receiving the query, each search-server fetches the postinglists for all query
terms stored in the index and calculates the partial score. After sorting the list by
score, one of the following steps is carried out:

Case-1: If the search-server contains only one query term then it forwards the
postinglist of the query term to the head-search-server as per the specified ac-
cumulator limit.

Case-2: If the search-server contains more than one but not all query terms, then
a partial similarity check is performed to generate a common list of documents.
This common list, which is constrained by the specified accumulator limit is
then transferred to the head-search-server.
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Figure 3.2: Query evaluation in DOT.

Case-3: If the search-servers contain all the query terms, then it will compute the
similarity using those postinglists and transfers the top-r most relevant query
documents to the head-search-server.

5. Each head-search-server either receives a list of final top-r documents or postinglists
from all the participating search-servers. If a head-search-server receives the final
top-r documents, then they are directly forwarded to the broker. Otherwise, the
head-search-server sends top-r documents after performing a similarity check4 on all
the postinglists of the terms in the query.

6. After receiving top-r results from all the sub-clusters, the broker prepares the list of
top-k documents and forwards it to the user.

4Comparing postinglists to find common list of documents
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3.2.1 Advantages of DOT over TP and DP

The DOT approach retains the benefits of the TP and DP approaches. However, the
more important question is how DOT remedies the limitation of both the approaches. We
discuss the advantages of DOT over the two other approaches below.

As compared to TP where there is a risk that the broker or the network will become
a bottleneck, DOT reduces this risk as a result of two factors. First, as each sub-cluster
deals with only a small portion of the index, the size of the postinglists which are required
to be transfer over the network for query processing is small. This reduces the traffic on
the data communication links. Secondly, the load on the broker is significantly lower as
the head-search-servers takes up the responsibility of performing similarity computation
between the postinglists of the query terms. The network can still become a bottleneck.

In the case of DOT, as all the sub-clusters participate in the query processing, overall
data transfer in the entire systems is still the same. To reduce the amount of data to be
transferred, only top x% of the documents from the postinglist of a query term is trans-
ferred. This process is repeated until top-k results are obtained for the sub-cluster (still
in the worst case, the entire postinglist might be transferred). This reduces the network
overhead and the load on the head-search-server without compromising effectiveness.

In TP based IR systems, performance risk due to load imbalance is high. This risk is
minimized in the case of DOT as each sub-cluster is responsible only for a small part(sub-
collection) of the data collection and the query is processed in parallel against the as-
signed sub-collection. This results in a distribution of query processing load among the
sub-clusters. Further, unlike TP, a search-server processes the document list before it is
transferred over the network (if all or more than one query terms are present on the search-
server). Thus, in the case of DOT, the search-server is more than just a disk controller.
However, DOT minimizes the effect due to a load imbalance, but cannot eliminate the
problem. This problem can be addressed by partitioning the index based on a query log
and will be addressed in future work.

Moreover, as each search-server is responsible for a certain set of terms Tn from the
vocabulary, unavailability of a search-server halts the query processing for the terms stored
on the unavailable server. This is a big risk for TP but not for DOT as query processing
can still function at the other sub-clusters with the loss of some effectiveness. Again, unlike
TP, the addition of new data or updating existing data on existing search-servers will only
effect search-servers of the sub-cluster (in which data is added or updated). Thus, like DP,
DOT supports scalability and a dynamic index without the loss of availability.

Unlike DP, in DOT, resources are more efficiently utilized, since query is only forwarded
to the search-server(s) which possesses required index for query processing.
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3.3 Design Knobs

To improve the overall performance of IR systems, various design strategies are adopted
such as replication, caching, data collection partitioning, collection selection, etc. However,
performance of DOD and DOT index partitioning strategies can also be improved by tuning
various configurable parameters or design knobs. The value of these parameters depend on
various factors such as data collection size, size of the cluster, and workload. By configuring
these design knobs, we would like to study their effect on the performance and also how
sensitive the technique are to changes in these parameters. Some identified design knobs
for DOT and DOD are listed below.

• Number of search-servers:
Considering that the number of search-servers is constant in the cluster, an increase
or decrease in the number of sub-cluster will affect the size of the sub-clusters. An
increase in the number of sub-clusters will increase the computing load on the broker,
but will decrease the load on the head-search-server. The size of the sub-cluster has
a sparse affect on the performance making it an important design parameter. An
increase or decrease in the size of a sub-cluster affects various system parameters,
but mainly the load on the head-search-server and the volume of communication.
Normally, we expect that with the increase in the number of servers, throughput
increases and latency decreases. However, the cost due to communication and load
on the head-search-server will also increase with the increase in the number of search-
servers. For instance, in the case of DOT, with an increase in the number of search-
servers, distribution of the term will get more skewed resulting in a further increase
in communication cost. This will increase the load on the head-search-servers as it
is required to do more similarity based computation. In the case of DOD, as all
the search-servers participate in the query processing, the time to evaluate query is
determined by the slowest machine. Thus, adding more servers increases the variance
between the average and worst performing servers. Also, the load on the head-search-
servers increases since it needs to process results received from all the search-servers
in the sub-cluster. Another factor which affects the size of the sub-cluster is the
size of the data collection. Over assigning servers to a smaller data collection will
not necessary improve the performance. Thus, the size of the sub-cluster is directly
proportional to the size of the data collection assign to that sub-cluster.

• Number of results per query per search-server:
An important question is, how should the per search-server result set size k be chosen
with respect to the number of search results m requested by the user. To guarantee
top results, the value of k usually equals m. However, the number of results returned
by each search-server has a non-negligible effect on the network, query processing
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(on the search-server), load on the head-search-server and load on the broker as a
result of two factors. First, if a user has asked for k results, it is highly unlikely that
all of the top-k results come from the same search-server. Since, as the number of
results per search-server increases, the amount of work per query increases though
at different rates. This increase in the work load on a search-server is due to the
performance heuristics like MaxScore5. Second, by making each search-server return
the top-k results, one incurs more load on the network. This design parameter
has comparatively less influence on DOT partitioning as only the head-search-server
returns the top-k result to the broker.

• Number of concurrent query requests:
Multithreading has emerged as one of the most promising and exciting techniques
used to achieve high performance while using resources more efficiently. However,
the performance of multithreading is not only affected by the overlapping of memory
latency with useful computation, but also strongly depends on the cache behavior
and the overhead of multithreading (e.g. thread management and context-switching
costs). In particular, multithreading of query requests affects the behavior of caches
and thus the overall performance in a nontrivial fashion. Thus, we would like to study
how significant are the improvements and to what design knobs is the multithreading
sensitive.

• Accumulator limit for DOT:
In the case of the DOT based IR system, the postinglists of terms are required to be
transferred over the network for query processing. Transferring the entire postinglists
of terms will significantly affect the performance (in terms of throughput and latency)
as the cost due to communication and load on the head-search-server will increase.
Deciding the size of postinglist that needs to be transferred over the network for
similarity computation without loss of effectiveness is a challenging problem. The
database research community have long studied the issue of efficient processing of
top-k queries. The TPUT algorithm [11] proposed by Cao and Wong addresses this
problem. The algorithm uses three phases in order to find the k objects with the
highest aggregate value for the query in the distributed environment. Trace-driven
study shows that the traffic of TPUT is a few magnitude less than existing algorithms
like Threshold algorithm [15]. Such data pruning technique that reduces network load
can be applied to our approach, however we opted for simple naive method to avoid
complexity. Setting the postinglist transfer size too small will affect the effectiveness
and setting it too high will waste resources. Thus, the lower the value of this design
knob, higher the efficiency and lower the effectiveness. To reduce the gap between

5MaxScore is a threshold method to compare the maximum score that documents could have in the
final list of results [36].
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efficiency and effectiveness, we transfer the top x% of list of the documents containing
the terms until we get a specific number of results (for that sub-cluster).

In the next chapter, we present several experimental results obtained by employing our
approach and we try to analyze these design knobs in light of those results.
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Chapter 4

Experiment

In this chapter, we present several experiments designed to study the effectiveness and
efficiency of our approaches. We want to know whether our index-partitioning strategies
help in lowering the cost when compared with the TP (term partitioning) or DP (docu-
ment partitioning) approaches. If so, we would also like to study how significant are the
improvements and to what design knobs are the technique sensitive.

4.1 Hardware and Software

The hardware used for all experiments reported in this thesis is a Beowulf-style cluster of
16 nodes called Shiraz. Shiraz is comprised entirely of Sunfire X4100 servers. Each node
is comprised of two dual-core AMS Opteron 280 processors with 8GB of RAM and two 72
gigabytes (GB) disks, connected via 1Gbit network. The local disks operate in RAID-0
(mirror) configuration to maintain availability of the node during disk failure. A NAS with
6 internal and 12 external disks are used to provide extra storage of 1.8 terabytes (TB)
shared between all the nodes of the cluster. The nodes run the OpenSuSE 10.1 operating
system.

The Nutch 1.0 search engine application was used to implement all our techniques.
Nutch is an open source search application implemented in Java and is based on the Lucene
library. Nutch consists of all three of the major components of a search application, i.e.
crawling, indexing and query processing. More information about Nutch can be found
in [27].
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4.2 Test Data

The data collections use in our experiments are derived from the GOV2 collection. GOV2
is a TREC test collection built in early 2004 by crawling Web pages and documents from
.gov domain of the US government. The collection is 426GB in size and contains 25
million documents [12]. As the index is stored in main memory instead of on the disk of
a server, the GOV2 data collection was reduced to 224GB. The 224GB data collection is
referred as DC/01. Dividing DC/01 into half gives the data collection of size 112GB and
is referred as DC/02. Similarly, data collection of size of 28GB is referred as DC/08 and
56GB as DC/04. Table 4.1 gives information about the size of the indexes and number of
documents in each data collection. Round robin approach was adopted to partition each

Table 4.1: Information about index size and number of documents for various sized data
collections.

Data Collection

Attribute DC/08 DC/04 DC/02 DC/01

Size (GB) 28 56 112 224
Documents (* 106) 1.66 3.24 6.5 13.1

Index(GB) 3.5 6.6 9.9 20

of the above mentioned data collections (i.e. DC/08, DC/04, DC/02, and DC/01) to form
sub-collections. The number of sub-collections equals the number of search-servers in a
cluster. For instance, to create 10 equally sized partitions for 10 search-servers from the
DC/02 (112GB) data collection, every 10th file of the collection was extracted into the first
partition, every tenth plus one file into second collection, and so on. Such data partitioning
methods results in a homogeneous spread of data between the sub-collections [29].

4.3 Test Queries

A query is essentially a sequence of tokens or phrases that are combined together using
boolean operators. The Million Query (1MQ) Track was used to evaluate all approaches.
The track contains ten thousand (10,000) queries, including 264 queries that overlap with
those used by the relevance feedback track. Each query was known to have had a *.gov
document clicked on after the query was issued. This means there is some evidence that
the query will have relevant documents in the GOV2 collection. Since the data collection
was reduced to 224GB we cannot use the entire set of 10000 queries as some queries would
not generate any results. Thus we run all 10000 queries against the index of the DC/01
collection and randomly select 5000 queries which have relevant documents in the data
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Figure 4.1: Distribution of tokens per query for MillionQuery TREC.

collection. Just to get an idea, Figure 4.1 highlights the number of tokens per query
distributed for 5000 queries from the Million Query Track.

4.4 Accumulator Limit

In the TP based IR system, postinglists of terms are required to be transferred over the
network for query processing. It is challenging to decide the amount of the postinglists
that need to be transferred over the network for a similarity computation to have no loss
of effectiveness. One may argue that it should be specific to the number of results you
are expecting from the system. But that alone does not help since we are still required to
transfer postinglists of some size to generate the specified number of results. Transferring
the entire postinglists of terms will significantly affect the throughput and increase query
latency. Further, setting the postinglist transfer size too small will affect the effectiveness
of results and setting it too high will use resources redundantly. Nicholas et al. [25] found
that the GOV2 data collection requires a postinglist transfer size of approximately 400000,
when accessed using 2004 TREC Terabyte topics and mean average precision. Through
experiments they confirmed that the loss in the effectiveness when the list size is reduced
to 100000 is insignificant. Moffat et al. [29] also carried out a similar study by comparing
different index partitioning models using the notion of ranking dissimilarity. Their study
confirmed the limit of 100000 as suitable conservative value with very small variance in
ranked results. Based on the above mentioned study, we took 100000 as our starting point
for postinglist size. The next question is what happens when we reduce this limit as the
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volume of the data collection reduces from DC/01 to DC/08. It seems reasonable to vary
the limit in proportion to the volume of a data collection.

4.5 Measurement

Two primary metrics to evaluate search are effectiveness and efficiency. Effectiveness
measures the ability of a search engine to find user intended information and efficiency
measures how quickly we can get this information. In this thesis, we present performance
from the perspective of efficiency while maintaining effectiveness prospective of Nutch. It is
very important to determine exactly what aspect of efficiency we want to measure and how
we want to measure it. Two of the most commonly used efficiency metrics are throughput
and latency. Throughput refers to the number of queries executed in a unit time. Query
latency is the amount of time a client waits after issuing a query before receiving a response.
As stated in [16, 40], throughput values are comparable only if the same collection and
queries are processed on the same hardware. As the number of search-servers may vary
independently of the data collection and index size, more meaningful metrics are required
to compare like with like. Hence, to facilitate meaningful comparisons, throughput values
reported in all the subsequent experiments follow the metric terabyte index queries per
machine second which is known as normalized throughput. That is, if n processors are
able to handle q queries in s seconds for the index of size iT Terabytes, then useful work
done is measured as (q ∗ iT )/(s ∗n). Larger rate means higher throughput and thus better
performance. Further, average response time in second can be given by (t∗ s)/q, where t is
the number of queries running concurrently system wide. Such analysis between workload,
computing power available and time taken to process data to complete the task provides
strong baseline for the investment. Even better performance metrics will also account for
other cost such as elapsed indexing time, temporary storage space while indexing, cooling
cost, and software costs. But this would complicate it even more and thus we stopped at
the index size and number of search-servers.

Various experiments were carried out to get insight on the performance of various ap-
proaches i.e. DP, TP, DOD, and DOT are as follows:

• Increasing the size of the collection while keeping the number of search-servers and
concurrency level constant will allow us to quantify the effect of data growth on the
throughput.

• With the number of search-servers and data collection size held constant, increasing
the number of simultaneous query requests will allow us to quantify the maximum
concurrent requests the system can handle efficiently.
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• Keeping the size of the data collection constant and increasing the number of pro-
cessor will allow us to identify overhead due to interprocess communication.

• Scalability of the method can be evaluated by varying the number of processors and
volume of a data collection in proportion.

After deciding what to measure, the next question is how to measure. The best approach
would be to measure the performance of the system in the steady state. In our case, the
steady state is reached as soon as a specified number of queries are concurrently running
system-wide and ends when specified number of queries were executed. For instance, if
the concurrency (threading) level for the experiment is set to 500 and number of queries
to be executed is set to 2000, steady state is reached as soon as we have 500 active queries
running system wide and ends when 2000th query is executed. The time elapsed before we
reached steady state is ignored. In the case of steady state, the results of the initial part of
the experiment are not included, a process is known as transient removal [20]. There are
many methods suggested in the literature for transient removal and most of them are based
on some heuristics. Our experiment shows that information system based on in memory
index, transient time is approximately 0.25% to 1% of total execution time and depends
on the concurrency level. Thus, the transient time for memory based IR systems is very
low compared to disk based IR systems [37]. All the experiments were run on the same
set of 5000 queries derived from the Million Query Track and each experiment is run 5
times and the mean of the experiments is reported in this thesis. Further, to study the
performance of the approaches in a pure form, the caching of the query results was not
done while performing experiments.

A Comparative study between index partitioning approaches in terms of scalability and
utilization of resources is carried out using efficiency and speedup metrics respectively.In
distributed and parallel systems, efficiency ratio quantifies the number of valuable operation
performed by machine while evaluating queries in parallel and is give by:

E = S/n

where S is speedup and n is number of search-servers. Speedup is used to express how
many time a parallel approach works faster than the best sequential approach to solve the
same problem. Speedup is given by

S = tsequential/tparellel

where tsequential is time taken by sequential approach to execute task ant tparellel is time
taken by parallel approach to execute task.
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Figure 4.2: Query evaluation in a monolithic search engine.

Figure 4.3: Performance of Monolithic Search Engine.

4.6 Evaluating Monolithic Architectures

To experiment with the monolithic architecture, we first configure Nutch as shown in the
Figure 4.2. A set of 5000 queries was executed sequentially on a single search-server. In
order to make meaningful comparisons with other approaches, the index against which the
search operation is performed is stored in the main memory of a single search-server.

In Figure 4.3, we observe that with the increase in the volume of a data collection,
throughput decreases and normalized throughput increases1. This gradual increase in nor-
malized throughput clearly indicates the efficient utilization of resources. These numbers
are later used to calculate efficiency and speedup ratio.

1As index size of DC/02 and DC/01 cannot fit into the memory of a single search-server, we extrapolated
the results.
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4.7 Effect of Threading on DP, DOD and DOT

Threading has emerged as one of the most promising and exciting techniques for exploit-
ing parallelism. To investigate the effect of concurrency on throughput, we ran a set of
experiments with DC/01 collection and 12 search-servers2. Throughput and normalized
throughput was recorded for different values of t, where t is the number of queries execut-
ing concurrently system-wide. In the case of DP and DOD, since all servers participate in
query processing, the number of threads running on each server is potentially t. However,
in practice, because some threads finish their tasks before others, the actual active load per
server is less than t (we recorded it around 75% of t). In the case of DOT, the server(s) are
only involved in query processing if it contains index for one or more query terms. Thus,
the number of threads running on each server is comparatively very low.

This experiment helps to identify the appropriate threading level necessary to achieve
high throughput and also helps us to set concurrency level for subsequent experiments for
all approaches.

Table 4.2: Normalized throughput for DP, DOD, and DOT. Set of experiments carried
out by varying concurrency level from 1 to 500; number of search-servers n=12 and data
collection DC/01. All values shown are mean over 5 runs and were recorded when the
system was in steady state.

Concurrency Level (t) DP DOD TP DOT

1 0.47 0.29 0.005 0.028
2 0.72 0.43 0.006 0.031
25 0.83 0.93 0.007 0.079
50 0.94 0.94 0.007 0.082
100 0.92 0.97 0.007 0.083
250 0.90 1.00 0.007 0.082
500 0.82 0.96 0.007 0.080

From Table 4.2 and Table 4.3, it is clear that in the case of DP, DOD, and DOT,
throughput and normalized throughput increase with the increase in the concurrency level
and peaks at t= 50, 250, and 100 respectively. From Table 4.3, it is clear that due to
concurrency, DP’s throughput rises by 99%, DOD’s by 247%, and DOT’s by 154% when
compared to sequential query processing. These results clearly indicate the importance
of threading in an IR system. However, concurrency affects the behavior of caches which
affects overall performance in a nontrivial manner. Thus, beyond a certain threshold,

2For DOD and DOT, 12 search-servers where split into 2 sub-clusters (groups) of 6 search-servers each.
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Table 4.3: Throughput for DP, DOD, TP, and DOT. Set of experiments carried out by
varying concurrency level from 1 to 500, number of search-servers n=12 and data collection
DC/01. All values shown are mean over 5 runs and were recorded when the system was in
steady state.

Concurrency Level (t) DP DOD TP DOT

1 282.5 172.2 3.21 16.7
2 433.8 260.3 3.62 18.5
25 495.7 558.5 4.05 47.4
50 561.2 564.1 4.07 49.1
100 552.7 582.3 4.18 50.0
250 542.4 597.1 4.08 49.2
500 494.6 578.7 3.90 48.1

increase in the concurrency level increases cost due to communication, cache coherence
and context switching resulting in a drop in performance.

In terms of approaches based on term partitioning, from Table 4.2 and Table 4.3 it is
clear that the DOT approach offers much better performance than the traditional term
partitioned method. This is because, in the case of TP, the broker becomes a bottleneck as
it is uni-processing all the queries and load imbalance among the search-servers. Further,
as entire postinglist of query terms are required to be transferred over the network for query
processing, load on the communication link increases. This is not the case with DOT as a
result of three factors. Firstly, query processing cost is shared between head-search-servers,
broker, and search-server. Thus results in more balanced distribution of load. Secondly,
in the case of DOT, search-servers are more than just a disk controller as they participate
in query processing. Lastly, search-servers sends per processed list of documents as per
accumulator limit instead of entire postinglists.

4.8 Effect of Most Optimal Concurrency Level

From the multi-threading experiment, it is clear that the DP, DOD, and DOT performed
better when the concurrency level is set to 50, 250 and 100 respectively. To further in-
vestigate the effect on performance of the concurrency level by varying the number of
search-servers for each data collection, a set of following experiments were designed.
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Figure 4.4: Effect of threading on performance of DP.

Figure 4.5: Effect of threading on performance of DOD.
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Figure 4.6: Effect of threading on performance of TP.

Figure 4.7: Effect of threading on performance of DOT.
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Table 4.4: Normalized throughput for DP. A set of experiments were carried out by varying
the number of search-servers for each data collection while keeping concurrency level fixed
at t=50. All values shown are mean over 5 runs and were recorded when the system was
in steady state.

Number of Search-servers (n)

Data Collection (GB) 4 6 8 10 12

DB/08 0.66 0.44 0.32 0.21 0.18
DB/04 1.19 0.70 0.52 0.39 0.31
DB/02 1.53 1.14 0.79 0.59 0.48
DB/01 2.53 1.99 1.51 1.16 0.94

DP

The first row in Table 4.4 represents the number of search-servers involved in query pro-
cessing. The first column in the table represents the data collections. Starting at the
(n=4 and DC/08) entry indicates that DC/08 data collection was divided equally among
4 search-servers each consisting of (DC/08)/4 of data.

We observe in Table 4.4 and Figure 4.8 that the normalized throughput decreases
with the increase in the number of search-servers. This observation demonstrates that the
approach is more efficient and utilizes resources more efficiently when data is stored on fewer
search-servers. One of the reasons for the initial increase in the normalized throughput,
as explained before, is that with the increase in the number of search-servers, the volume
of data assigned to each server decreases, resulting in smaller postinglists and faster query
processing. When evaluating queries concurrently, there is an extra cost involved due to
thread-management issues like context-switching, race conditions and cache behavior. This
cost increases even more when things are done more quickly. Other costs involved in adding
extra servers which effect the performance are communication costs and overhead on the
broker. Figure 4.8 shows that the addition of more search-servers beyond certain threshold
has little effect on the throughput irrespective of the volume of a data collection. Further,
with the increase in the volume of the data while keeping the number of servers constant,
normalized throughput increases indicating efficient utilization of the resources.

In terms of scalability, looking along the diagonal, normalized throughput tends to be
same, which implies that the approach is scalable. For instance, the (n=4, DC/02) entry
is same as the entry (n=8, DC/01) in Table 4.4.
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Figure 4.8: Effect of concurrency query request (t=50) on DP.

DOD

To analyze the performance of DOD, we experimented with the configuration as shown
in Figure 3.1. First row in Table 4.5 gives information about the number of groups and
the number of search-servers in each group. For instance, 2G*3SS is read as: two groups,
each consisting of 3 search-servers. One of the search-servers in each group behaves as the
head-search-server.

Table 4.5: Normalized throughput for DOD. A set of experiments were carried out by
varying the number of search-servers for each data collection while keeping concurrency
level fixed at t=250. All values shown are mean over 5 runs and were recorded when the
system was in steady state.

Number of Search-servers(n)

Data Collection(GB) 2G ∗ 3SS 2G ∗ 4SS 2G ∗ 5SS 2G ∗ 6SS 4G ∗ 3SS

DC/08 0.41 0.21 0.09 0.13 0.18
DC/04 0.59 0.35 0.37 0.30 0.34
DC/02 0.84 0.69 0.47 0.30 0.39
DC/01 1.98 1.35 0.77 1.00 0.96

We observe in Table 4.5 and Figure 4.9 that the normalized throughput decreases with
the increase in the number of search-servers and then again increases slightly. For instance,
in the case of DC/01, normalized throughput (in Figure 4.9) decreases from 2G*3SS to
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Figure 4.9: Effect of concurrency query request (t=250) on DOD.

2G*4SS to 2G*5SS and then increases for 2G*6SS. At first, this is a surprising result, since
as we increase the number of servers, we expect throughput to either increase and then
flatten or decrease gradually. Thus, to investigate the matter, we observed the pattern of
throughput when concurrency level was set to 1, i.e sequential query processing. We found
that during sequential query processing, for instance, in the case of DC/01, throughput
increases with the increase in the number of search-servers and peaks at 2G*5SS and then
starts to decrease. This pattern is totally reverse of what we observed for the same data
collection when the concurrency level is set to 250. This clearly indicates the effect of cache
management issues on the performance of the system.

Looking at Figure 4.9, it is clear that the approach is more efficient when data is stored
on fewer search-servers because the addition of each search-server results in additional
communication costs, some extra cost on the head-search-server, and additional cost due
to thread management.

We also observed in Figure 4.9 that when the volume of data grows in proportion to
the number of search-servers, normalized throughput increases indicating scalability of the
approach. For instance, the entry (2G*3SS, DC/02) is 0.84 which is less than the entry
(2G*6SS, DC/01) is 1.

DOT

To analyze the performance of DOT, we experimented with the configuration shown in Fig-
ure 3.2. We observe in Table 4.6 and Figure 4.10 that the normalized throughput decreases
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Table 4.6: Normalized throughput for DOT partitioned index organization technique. A
set of experiments were carried out by varying the number of search-servers for each data
collection while keeping concurrency level fixed at t=100. All values shown are mean over
5 runs and were recorded when the system was in steady state.

Number of Search-servers(n)

Data Collection(GB) 2G ∗ 3SS 2G ∗ 4SS 2G ∗ 5SS 2G ∗ 6SS 4G ∗ 3SS

DC/08 0.110 0.080 0.060 0.050 0.050
DC/04 0.173 0.125 0.084 0.059 0.057
DC/02 0.172 0.104 0.071 0.059 0.051
DC/01 0.199 0.131 0.088 0.083 0.049

with the increase in the number of search-servers. At first, this is a surprising result, since
as we increase the number of servers, we expect throughput to increase considering the
benefits gained due to concurrency in the term partitioning strategies. Part of the problem
is that the head-search-server becomes a bottle-neck. The head-search-server essentially
becomes a uni-processor (in the group) processing all the queries as the term index is spread
over many search-servers and is skewed. Adding to the problem, the head-search-server
has to wait for the postinglists, which is largely affected by the slowest search-server, and
also has to deal with thread management issues.

Looking at Figure 4.10, it is clear that our approach is more efficient when data is
stored on fewer search-servers because with the fewer search-servers, the possibility of the
required postinglists for terms to be present on same search-server is more. If more than one
term required to evaluate the query are present on the same search-server, then instead of
sending postinglists of all terms present on that search-server, we will only send a common
list of documents which contains all the terms, reducing network cost as well as load on
the head-search-server.

It is clear from Figure 4.6 that as the volume of data grows in proportion to the number
of search-servers, how wasteful this approach became while incorporating concurrency. Al-
though DOT performed better in terms of throughput when compared with the traditional
TP approach, it resulted in a loss of scalability.

4.9 Effect of Sequential Query Processing

Concurrency affects the behavior of the cache, and thus the overall performance in a
nontrivial fashion. Hence, it also becomes necessary to quantify the performance by running
queries sequentially. To study the effect of concurrency on the performance without any

43



Figure 4.10: Effect of concurrency query request (t=100) on DOT.

thread management issues, we ran a set of experiments varying the number of search-servers
for each data collection while keeping the concurrency level fixed at t=1.

This set of experiments will help us investigate the effect on throughput and resource
utilization, by varying the volume of data while keeping the number of search-servers
constant and vice-versa i.e. by varying the number of search-servers while keeping the
volume of data constant. Further, by varying the number of servers and volume of data in
proportion will give us insights on scalability. It will also help us find the best configuration
for sequential query execution and thus help us investigate how this configuration behaves
for different concurrency levels.

DP

To analyze the performance of DP, we experimented with the similar configuration shown
in Figure 1.3.

Looking horizontally across Table 4.7 and Figure 4.11, we observe that the normalized
throughput decreases with the increase in the number of search-servers. This indicates
that the approach is more efficient when data is stored on fewer search-servers. This is
because communication cost and overhead on the broker increases with the increase in the
number of search-servers. Thus, resulting in inefficient utilization of available resources.

A different way of looking at the table is along the diagonal. When the volume of data
grows in proportion to the number of search-servers, normalized throughput tend to be
same. For instance, (n=6, DC/08) entry is same as (n=12, DC/04) entry also entry (n=4,
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Table 4.7: Normalized throughput for DP. Set of experiments were carried out by varying
the number of search servers for each data collection while keeping concurrency level fixed
at t=1. All values shown are mean over 5 runs and were recorded when the system was in
steady state.

Number of Search-servers (n)

Data Collection(GB) 4 6 8 10 12

DB/08 0.33 0.21 0.15 0.12 0.09
DB/04 0.62 0.37 0.30 0.20 0.16
DB/02 0.78 0.53 0.40 0.30 0.24
DB/01 1.38 0.96 0.73 0.59 0.47

DC/02) is approximately same as (n=8, DC/01) entry3. This confirms scalability of the
approach.

DOD

Table 4.8: Normalized throughput for DOD. A set of experiments was carried out by
varying the number of search-servers for each data collection while keeping concurrency
level fixed at t=1. All the values shown are mean over 5 runs and were recorded when the
system was in steady state.

Number of Search-servers (n)

Data Collection(GB) 2G ∗ 3SS 2G ∗ 4SS 2G ∗ 5SS 2G ∗ 6SS 4G ∗ 3SS

DC/08 0.14 0.09 0.07 0.06 0.06
DC/04 0.21 0.15 0.12 0.09 0.10
DC/02 0.30 0.23 0.18 0.16 0.18
DC/01 0.57 0.44 0.37 0.29 0.29

Looking horizontally across Table 4.8 and Figure 4.12, we observe that the more efficient
metric normalized throughput, decreases with the increase in the number of search-servers
within the group from 2G ∗ 3SS to 2G ∗ 6SS. One of the reasons for poor performance
is that sequential query processing increases the communication costs and gains nothing
from load sharing between the broker and head search-servers. Further, sequential query
processing results into under utilization of the resources as all the servers may not contain

3There is some variance in normalized throughput as doubling the size of data does not result in the
index size being doubled. For instance, index of DC/08 (which is 3.5GB) is not half of index DC/04 (which
is 6.6GB).
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Figure 4.11: Effect of sequential query processing on DP.

Figure 4.12: Effect of sequential query processing on DOD.
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query relevant results. From the Figure 4.12 it is clear that adding more computing power
will not help; on the other hand it will suffer from communication costs and increased
overhead on the head-search-server of a group. Thus, results in inefficient utilization of
resources.

In terms of scalability, as the volume of data grows in proportion to the number of
search-servers, the general pattern shows that normalized throughput tends to be the
same. For instance, entry (2G*3SS, DC/02) is approximately same as entry (2G*6SS,
DC/01). Further, normalized throughput is same when the number of sub-clusters and
the volume of data grows in proportion. For instance, entry (2G*3SS, DC/02) is same as
entry (4G*3SS, DC/01).

DOT

Table 4.9: Normalized throughput for DOT. A set of experiments were carried out by
varying the number of search-servers for each data collection while keeping the concurrency
level fixed at t=1. All values shown are mean over 5 runs and were recorded when the
system was in steady state.

Number of Search-servers (n)

Data Collection(GB) 2G ∗ 3SS 2G ∗ 4SS 2G ∗ 5SS 2G ∗ 6SS 4G ∗ 3SS

DC/08 0.020 0.020 0.010 0.010 0.010
DC/04 0.031 0.021 0.014 0.011 0.011
DC/02 0.034 0.022 0.017 0.014 0.014
DC/01 0.056 0.042 0.033 0.028 0.028

Looking horizontally across Table 4.9, we observe that again the normalized throughput
decreases with the increase in the number of search-servers (in the group). This is because,
with the increase in the number of search-servers, the postinglists to search-servers assign-
ments get skewed. Thus, most of the times, postinglists are sent to the head-search-server
for query processing. This results in an increase in the costs due to communication and
load on the head-search-servers. Hence, this indicates that the resources are more efficiently
utilized when data is stored on fewer servers.

In terms of scalability, as the volume of data grows in proportion to the number of
search-servers, the general pattern shows that the normalized throughput tends to be
constant. For instance, in Table 4.9, entry (2G*3SS, DC/02) is approximately the same
as the entries (2G*6SS, DC/01) and (4G*3SS, DC/01) indicating the approach is scalable.
Further, normalized throughput tends to be the same when the number of sub-clusters
and volume of data grows in proportion. For instance, in the Table 4.9, entry (2G*3SS,
DC/02) is same as entry (4G*3SS, DC/01).
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Figure 4.13: Effect of sequential query processing on DOT.

4.10 Comparison between Index Partitioning Approaches

In this section, we compare all methods (DP, DOD, and DOT) with respect to high per-
formance, scalability, resource utilization, and availability. The efficiency ratio is used to
compare the approaches in terms of resource utilization and speedup performance metric
is used to prove scalability of the approach. Efficiency and speedup performance metrics
are explained in detail in Section 4.5. Efficiency ratio is per search-server and should not
be confused with the entire system (cluster).

4.10.1 Concurrency

Figure 4.14 shows that the DOD approach performs better than the other two approaches
when the concurrency level (t=500) is set high. In the case of DP, the rise in concur-
rency level results in the increase in the load on the broker and network, because all n
search-servers send top− k results to the broker, which are accumulated and processed by
the broker before sending those results to the user. On the other hand, for DOD index
partitioning, load on the broker and network is low as a result of two factors. First, as
only the head-search-server of each group (sub-cluster) sends results to the broker, it needs
to compare only g ∗ top − k results where g is the number of sub-clusters. This results
in a significant decrease in the amount of data to be transferred to the broker and pro-
cessed by the broker. Second, the effect of overhead due to thread management issues is
lower than for DP due to the distribution of computational load between the broker and
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head-search-server(s).

Figure 4.14 shows that the DOT approach performs worst because the head-search-
server(s) becomes a bottleneck as it is essentially uni-processing all the queries; although
the search-servers in the group are serving postinglists, their contribution is insignificant
because they are largely idle. Also, when the number of search-servers in the sub-cluster
increases, term distribution gets skewed, resulting in an increase in the network traffic as
more postinglists are transferred to the head-search-server.

4.10.2 Scalability

In terms of scalability, from Figure 4.15(a,b,c,d) it is clear that irrespective of concurrency
level, both DP and DOD show a rise in the speedup ratio and thus are scalable. Further, the
DOD partitioning approach performers better than DP for large data collections (DC/01,
12-search-servers) as shown in Figure 4.15(b,c,d).

Further, the DOT approach is not at all scalable as the speedup ratio drops significantly
(halves) when the volume of data and number of search-servers grows in proportion as a
result of two factors. First, as the number of search-servers in the sub-cluster increases,
term index gets more skewed. This results in an increase in the number of transfers of
postinglists over the network for query processing. Second, the head-search-server becomes
a bottleneck as it is essentially uni-processing all the queries.

4.10.3 Resource Utilization

The cost due to communication, load on the broker, and processing at the head-search-
server increase with the increase in the number of search-servers. Therefore, as seen from
Figure 4.16, it is clear that all the approaches utilize resources more efficiently when data
is stored on fewer search-servers. Data assignment to each server decreases with the rise
in the number of servers, resulting into smaller index and faster query processing. Faster
query processing and higher concurrency leads to thread management issues which results
in inefficient utilization of resources.

From Figure 4.16(b) it is clear that the DOD approach utilizes resources more efficiently
compared to the other approaches as a result of three factors. First, in the case of DOD,
cost due to communication is low when compared to the baseline DP approach, because the
addition of a layer between the broker and search-server doubles the bandwidth, however
the amount of data required to transfer is still the same. Second, each search-server is
entitled to generate only x% of the results (x=95% of top-k). Thus, the processing cost
on a search-server is low as compared to DP. Third, the amount of results processed by
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Figure 4.14: Effect of Concurrency on DP, DOD, and DOT. Experiment carried out by
varying concurrency t from 1 to 500 and fixed data collection DC/01. (a) 6 search servers.
(b) 12 search servers.
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Figure 4.15: Comparison in terms of scalability. Set of experiments carried out by varying
the number of search-servers for each data collection from (DC/02,6) to (DC/01,12). (a)
sequential query processing (t=1). (b) t=50. (c) t=250. (d) t=500.
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Figure 4.16: Comparison in terms of resource utilization. (a) by partitioning DC/02 data
collection among search-servers. (b) by partitioning DC/01 data collection among search-
servers.
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Figure 4.17: Effect of concurrency on steady state.

the broker is less as the computational cost is shared between the broker and head-search-
server(s). On the other hand, DOT performs worst as a result of load imbalance.

4.10.4 Availability

IR systems build on top of distributed environment are vulnerable to the non-availability of
the search-servers. Except for the traditional TP approach, all index partitioning strategy
supports availability with loss of some effectiveness. However, ext1ending the index to be
fault-tolerant is another crucial improvement which can be achieved by replicating index.

4.11 Other Comparative Experiments

4.11.1 Steady State

From the Figure 4.17, it is clear that the time require to reach steady state increases with
the increase in the computing load and is approximately same for all index partitioning
technique. However, IR system base on the memory index takes fewer time to reach steady
state.
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Table 4.10: Effect of number of results generated per search-server on Throughput. Con-
currency level t= 500, n=12 search-servers and DC/01 data collection. Unit:- queries per
second.

Results DP DOD TP DOT

10 494.6 578.2 3.9 48.1
50 462.0 562.4 3.9 46.7
100 449.6 551.1 3.9 45.1

4.11.2 Design Knob: Number of Results per Search-server

From the Table 4.10, we observer that the throughput for DP, DOD, and DOT decreases
with the increase in the number of results generated by each search-server. This indicates
that load on the server-server, broker, and network increases with the increase in the num-
ber of results. Same is not true for TP because amount of data required to be transferred to
the broker and process by the broker is still the same. In the case of TP, broker has to sort
entire list of relevant documents by score before sending it to the user. Thus forwarding
top 10 results or top 100 results to the user has a negligible effect on the broker.
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Chapter 5

Conclusion and Future Works

In this thesis, we designed and implemented two high performance inverted index parti-
tioning schemes for a distributed Web search engine, running on the top of a cluster of
machines. We analyzed two existing inverted-index partitioning strategies to help in char-
acterizing the behavior of an IR system based on those approaches. This knowledge is taken
into account while developing new efficient index partitioning strategies. Our Document
Over Term approach retains the disk access benefit of the term partitioning (TP) approach;
and sharing computational load, scalability, maintainability, and availability benefits of the
document partitioning (DP) approach. We also introduced the Document Over Document
strategy which retains all the benefits of the DP approach, but more effectively reduces the
computational load and uses resources more efficiently. The detailed experimental com-
parison carried out between the existing and proposed approaches is described in Chapter
4 of this thesis.

In our experimental analysis, we make use of a large volume of data rather than extrap-
olating from small-scale experiments; use a realistic query set instead of synthetic query
set; and record results when the system was in a steady state; to demonstrate the efficacy
of the approach. We explore several design knobs, such as concurrent query request, cluster
size, sub-cluster size, accumulator limit, and results sets; and studied how significant are
the variation in the performance in term of throughput and resource utilization; and to
what design knobs is the technique sensitive.

We compared all the methodologies experimentally, and proved that the DP and DOD
performs significantly better than the others. Our experiments have demonstrated that
at a high concurrency level, the DOD approach improves query throughput by 17% and
efficiency(in terms of resource utilization) by 20% over a baseline DP approach.

Our experiments have demonstrated that the DOT approach offers much better perfor-
mance than the traditional TP approach. The DOT approach improves query throughput
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by 12 times over TP. However, when compared to the DOD and DP at a high concurrency
level, the DOD approach improved query throughput by over 12 times and DP by over 10
times. On the other hand, DOT offers efficient utilization of search-servers and lowers the
volume of disk access. These desirable attributes mean that further work should be done
to address the load balancing problems by either distribution lists smartly or via selective
lists replication guided by query log analysis.

Surprisingly, from experiments we discover that the IR system based on an in memory
index takes very little time to warm-up. This indicates that the time taken by a system to
reach its full potential after a failure is very low (few hundred milliseconds). Thus, recovery
to full potential is quick.

We strongly believe that with some improvement in the area of data collection parti-
tioning, the proposed architecture (DOD and DOT) has the potential to utilize resource
more effectively and efficiently by reducing the computing cost of solving queries.

There is a lot of scope for future work in this area. Index partitioning using DOT or
DOD seems to be a promising, which motivates further research. We sketch some possible
research directions focusing on increasing the effectiveness of these methods in a test setting
of larger scale:

• Considering the size of Web, GOV2 is not a large data collection. Further experi-
ments on a larger data set and bigger cluster will be performed as a part of ongoing
investigations along with the comparison with other hybrid approaches.

• Optimization of the index structure of the DOT strategy to avoid real time calculation
of partial score can enhance the performance.

• Effectiveness of ranking algorithm is unclear for Nutch. Examining tradeoff between
effectiveness and efficiency will be address in the future works.

• The current work provides guarantees on the performance in terms of efficiency.
Work on guaranteeing performance in terms of other metrics like effectiveness, using
a similar index partitioning approach would be interesting and challenging as those
metrics may depend on other system parameters. Designing a strategy to improve
the effectiveness by sharing information among the sub-clusters without affecting the
performance might be useful.

• Caching is aimed exclusively at reducing the computing load of the system and thus
improving the overall system efficiency. Running a distributed IR system on top of
the DOD or DOT approach results in at least two levels of caches, one in the broker
and one in the head-search-server(s). The challenges of making effective use of caches
on the broker (or any frontend server) by deciding which query result sets to store
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are well studied. Designing a caching policy which maintains exclusivity among the
contents of the caches in multi-layer architecture like DOT and DOD will enhance
the performance and will lead to efficient resource utilization.

• Collection selection strategy minimizes the number of search-servers contacted for
query processing. Preparing the routing list of search-servers containing the relevant
documents incurs extra load. This cost increases with the increase in the number of
servers in a cluster. Thus, designing a collection selection strategy for DOD, which
deals with finding sub-cluster(s) containing relevant documents instead of search-
servers, will be computationally less expensive and at the same time use resources
more efficiently.

• Effectiveness and efficiency of a collection selection strategy directly depends on how
documents are partitioned among the servers. If documents are randomly partitioned,
the collection selection strategy will end up sending a query to almost all servers. In
[30], authors propose algorithms, which are explained briefly in Section 2.4.1, to per-
form data collection partitioning and collection selection using query log analysis
which is based on a document classification techniques. Work on guaranteeing per-
formance in terms of effectiveness and efficiency for the DOD approach, using data
collection partitioning technique along with the collection selection strategy proposed
in [30] would be interesting and challenging.

• The main shortcomings of the DOT architecture are hotspots and load imbalance.
It is possible to improve the balance of the load by exploiting the information on
the frequency and co-occurrence of the terms in the query logs for distributing terms
among the search-servers and for postinglist replication.

• In the case of DOD, instead of using heuristics for specifying the number of results
to be generated by each search-server, a probabilistic approach could be adopted to
guarantee that each head-search-server sees at least the top-k results.

57



References

[1] Claudine Santos Badue, Ricardo A. Baeza-Yates, Berthier A. Ribeiro-Neto, Artur
Ziviani, and Nivio Ziviani. Analyzing imbalance among homogeneous index servers in
a web search system. Inf. Process. Manage., 43(3):592–608, 2007. 15

[2] Claudine Santos Badue, Ricardo A. Baeza-Yates, Berthier A. Ribeiro-Neto, and Nivio
Ziviani. Distributed query processing using partitioned inverted files. In SPIRE, pages
10–20, 2001. 14

[3] Ricardo A. Baeza-Yates, Carlos Castillo, Flavio Junqueira, Vassilis Plachouras, and
Fabrizio Silvestri. Challenges on distributed web retrieval. In ICDE, pages 6–20, 2007.
14

[4] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Retrieval.
ACM Press / Addison-Wesley, 1999. 2, 3, 4, 10

[5] Deepavali Bhagwat, Kave Eshghi, and Pankaj Mehra. Content-based document rout-
ing and index partitioning for scalable similarity-based searches in a large corpus. In
KDD, pages 105–112, 2007. 15, 16

[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003. 16

[7] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks, 30(1-7):107–117, 1998. 10

[8] Brendon Cahoon, Kathryn S. McKinley, and Zhihong Lu. Evaluating the performance
of distributed architectures for information retrieval using a variety of workloads. ACM
Transactions on Information Systems, 18(1):1–43, 2000. 10

[9] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching distributed collections
with inference networks. In SIGIR, pages 21–28, 1995. 16

58



[10] Berkant Barla Cambazoglu, Aytul Catal, and Cevdet Aykanat. Effect of inverted
index partitioning schemes on performance of query processing in parallel text retrieval
systems. In ISCIS, pages 717–725, 2006. 6, 13

[11] Pei Cao and Zhe Wang. Efficient top-k query calculation in distributed networks. In
PODC: 23th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, pages 206–215, 2004. 28

[12] Nick Craswell. GOV2 Test Collection, 2004. http://ir.dcs.gla.ac.uk/test_

collections/gov2-summary.htm. 31

[13] Owen de Kretser, Alistair Moffat, Tim Shimmin, and Justin Zobel. Methodologies for
distributed information retrieval. In ICDCS, pages 66–73, 1998. 10

[14] Susan T. Dumais. Latent semantic indexing (lsi) and trec-2. In TREC, pages 105–116,
1993. 16, 17

[15] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. JCSS: Journal of Computer and System Sciences, 66(4):614–656, 2003.
28

[16] William B. Frakes. Introduction to information storage and retrieval systems. In
Information Retrieval: Data Structures & Algorithms, pages 1–12. 1992. 2, 3, 4, 6, 33
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