118 research outputs found

    An Analysis of Electromagnetic Interference (EMI) of Ultra Wideband(UWB) and IEEE 802.11A Wireless Local Area Network (WLAN) Employing Orthogonal Frequency Division Multiplexing (OFDM)

    Get PDF
    Military communications require the rapid deployment of mobile, high-bandwidth systems. These systems must provide anytime, anywhere capabilities with minimal interference to existing military, private, and commercial communications. Ultra Wideband (UWB) technology is being advanced as the next generation radio technology and has the potential to revolutionize indoor wireless communications. The ability of UWB to mitigate multipath fading, provide high-throughput data rates (e.g., greater than 100 Mbps), provide excellent signal penetration (e.g., through walls), and low implementation costs makes it an ideal technology for a wide range of private and public sector applications. Preliminary UWB studies conducted by The Institute for Telecommunications Science (ITS) and the Defense Advanced Research Projects Agency (DARPA) have discovered that potential exists for harmful interference to occur. While these studies have provided initial performance estimates, the interference effects of UWB transmissions on coexisting spectral users are largely unknown. This research characterizes the electromagnetic interference (EMI) effects of UWB on the throughput performance of an IEEE 802.11a ad-hoc network. Radiated measurements in an anechoic chamber investigate interference performance using three modulation schemes (BPSK, BPPM, and OOK) and four pulse repetition frequencies over two Unlicensed National Information Infrastructure (U-NII) channels. Results indicate that OOK and BPPM can degrade throughput performance by up to 20% at lower pulse repetition frequencies (PRFs) in lower U-NII channels. Minimal performance degradation (less than one percent) due to interference was observed for BPSK at the lower PRFs and higher U-NII channels

    Interference management in impulse-radio ultra-wide band networks

    Get PDF
    We consider networks of impulse-radio ultra-wide band (IR-UWB) devices. We are interested in the architecture, design, and performance evaluation of these networks in a low data-rate, self-organized, and multi-hop setting. IR-UWB is a potential physical layer for sensor networks and emerging pervasive wireless networks. These networks are likely to have no particular infrastructure, might have nodes embedded in everyday life objects and have a size ranging from a few dozen nodes to large-scale networks composed of hundreds of nodes. Their average data-rate is low, on the order of a few megabits per second. IR-UWB physical layers are attractive for these networks because they potentially combine low-power consumption, robustness to multipath fading and to interference, and location/ranging capability. The features of an IR-UWB physical layer greatly differ from the features of the narrow-band physical layers used in existing wireless networks. First, the bandwidth of an IR-UWB physical layer is at least 500 MHz, which is easily two orders of magnitude larger than the bandwidth used by a typical narrow-band physical layer. Second, this large bandwidth implies stringent radio spectrum regulations because UWB systems might occupy a portion of the spectrum that is already in use. Consequently, UWB systems exhibit extremely low power spectral densities. Finally IR-UWB physical layers offer multi-channel capabilities for multiple and concurrent access to the physical layer. Hence, the architecture and design of IR-UWB networks are likely to differ significantly from narrow-band wireless networks. For the network to operate efficiently, it must be designed and implemented to take into account the features of IR-UWB and to take advantage of them. In this thesis, we focus on both the medium access control (MAC) layer and the physical layer. Our main objectives are to understand and determine (1) the architecture and design principles of IR-UWB networks, and (2) how to implement them in practical schemes. In the first part of this thesis, we explore the design space of IR-UWB networks and analyze the fundamental design choices. We show that interference from concurrent transmissions should not be prevented as in protocols that use mutual exclusion (for instance, IEEE 802.11). Instead, interference must be managed with rate adaptation, and an interference mitigation scheme should be used at the physical layer. Power control is useless. Based on these findings, we develop a practical PHY-aware MAC protocol that takes into account the specific nature of IR-UWB and that is able to adapt its rate to interference. We evaluate the performance obtained with this design: It clearly outperforms traditional designs that, instead, use mutual exclusion or power control. One crucial aspect of IR-UWB networks is packet detection and timing acquisition. In this context, a network design choice is whether to use a common or private acquisition preamble for timing acquisition. Therefore, we evaluate how this network design issue affects the network throughput. Our analysis shows that a private acquisition preamble yields a tremendous increase in throughput, compared with a common acquisition preamble. In addition, simulations on multi-hop topologies with TCP flows demonstrate that a network using private acquisition preambles has a stable throughput. On the contrary, using a common acquisition preamble exhibits an effect similar to exposed terminal issues in 802.11 networks: the throughput is severely degraded and flow starvation might occur. In the second part of this thesis, we are interested in IEEE 802.15.4a, a standard for low data-rate, low complexity networks that employs an IR-UWB physical layer. Due to its low complexity, energy detection is appealing for the implementation of practical receivers. But it is less robust to multi-user interference (MUI) than a coherent receiver. Hence, we evaluate the performance of an IEEE 802.15.4a physical layer with an energy detection receiver to find out whether a satisfactory performance is still obtained. Our results show that MUI severely degrades the performance in this case. The energy detection receiver significantly diminishes one of the most appealing benefits of UWB, specifically its robustness to MUI and thus the possibility of allowing for parallel transmissions. This performance analysis leads to the development of an IR-UWB receiver architecture, based on energy detection, that is robust to MUI and adapted to the peculiarities of IEEE 802.15.4a. This architecture greatly improves the performance and entails only a moderate increase in complexity. Finally, we present the architecture of an IR-UWB physical layer implementation in ns-2, a well-known network simulator. This architecture is generic and allows for the simulation of several multiple-access physical layers. In addition, it comprises a model of packet detection and timing acquisition. Network simulators also need to have efficient algorithms to accurately compute bit or packet error rates. Hence, we present a fast algorithm to compute the bit error rate of an IR-UWB physical layer in a network setting with MUI. It is based on a novel combination of large deviation theory and importance sampling

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    IR-UWB for multiple-access with differential-detection receiver

    Get PDF
    Impulse-Radio Ultra-Wideband (IR-UWB) emerged as a new wireless technology because of its unique characteristics. Such characteristics are the ability to support rich-multimedia applications over short-ranges, the ability to share the available spectrum among multi-users, and the ability to design less complex transceivers for wireless communication systems functioning based on this technology. In this thesis a novel noncoherent IR-UWB receiver designed to support multiple-access is proposed. The transmitter of the proposed system employs the noncoherent bit-level differential phase-shift keying modulation combined with direct-sequence code division multiple-access. The system is investigated under the effect of the additive white Gaussian noise with multiple-access channel. The receiver implements bit-level differential-detection to recover information bits. Closed-form expression for the average probability of error in the proposed receiver while considering the channel effects is analytically derived. This receiver is compared against another existing coherent receiver in terms of bit error rate performance to confirm its practicality. The proposed receiver is characterized by its simple design requirements and its multiple-access efficiency

    On uncoordinated wireless ad-hoc networks:data dissemination over WIFI and cross-layer optimization for ultra wide band impulse radio

    Get PDF
    Emerging pervasive wireless networks, pocket switched networks, Internet of things, vehicular networks and even sensor networks present very challenging communication circumstances. They might involve up to several hundreds of wireless devices with mobility and intermittent connectivity. Centralized coordination in such networks is practically unfeasible. We deal with these challenge using two potential technologies: WIFI and Ultra Wide Band (UWB) Impulse Radio (IR) for medium and short communication range, respectively. Our main goal is to improve the communication performance and to make these networks sustainable in the absence of a centralized coordination. With WIFI, the goal is to design an environment-oblivious data dissemination protocol that holds in highly dynamic unpredictable wireless ad-hoc networks. To this end, we propose a complete design for a scope limited, multi-hop broadcast middleware, which is adapted to the variability of the ad-hoc environment and works in unlimited ad-hoc networks such as a crowd in a city, or car passengers in a busy highway system. We address practical problems posed by: the impossibility of setting the TTL correctly at all times, the poor performance of multiple access protocols in broadcast mode, flow control when there is no acknowledgment and scheduling of multiple concurrent broadcasts. Our design, called "Self Limiting Epidemic Forwarding" (SLEF), automatically adapts its behavior from single hop MAC layer broadcast to epidemic forwarding when the environment changes from being extremely dense to sparse, sporadically connected. A main feature of SLEF is a non-classical manipulation of the TTL field, which combines the usual decrement-when-sending to many very small decrements when receiving. Then, we identify vulnerabilities that are specific to epidemic forwarding. We address broadcast applications over wireless ad-hoc networks. Epidemic forwarding employs several mechanisms such as forwarding factor control and spread control, and each of them can be implemented using alternative methods. Thus, the existence of vulnerabilities is highly dependent on the methods used. We examine the links between them. We classify vulnerabilities into two categories: malicious and rational. We examine the effect of the attacks according to the number of attackers and the different network settings such as density, mobility and congestion. We show that malicious attacks are hard to achieve and their effects are scenario-dependent. In contrast, rational attackers always obtain a significant benefit. The evaluation is carried out using detailed realistic simulations over networks with up to 1000 nodes. We consider static scenarios, as well as vehicular networks. In order to validate our simulation results, we build a solid and widely adaptable experimental testbed for wireless networks. It is composed of 57 mobile wireless nodes equipped with WIFI interface. The adopted platform is OpenWrt, a Linux-like firmware, which makes the testbed robust and easily configurable. With UWB IR, the main problem we deal with is the presence of uncontrolled interference. Indeed, similarly to Code Division Multiple Access (CDMA) systems, signal acquisition with UWB IR signaling requires power control in the presence of interferers, which is very expensive in an uncoordinated system. We solve this problem through a cross-layer optimization: We propose a new signal acquisition method that is independent of the received signal power and we adapt the MAC layer accordingly. Our signal acquisition method is designed to solve the IUI (Inter-User Interference) that occurs in some ad-hoc networks where concurrent transmissions are allowed with heterogeneous power levels. In such scenarios, the conventional detection method, which is based on correlating the received IR signal with a Template Pulse Train (TPT), does not always perform well. The complexity of our proposal is similar to that of the conventional method. We evaluate its performance with the Line Of Sight (LOS) and the Non-LOS (NLOS) office indoor-channel models proposed by the IEEE P802.15.4a study group and find that the improvement is significant. We also investigate the particular case where the concurrent transmissions have the same time-hopping code, and we show that it does not result in collision, such scenarios appear in ad-hoc networks that employ a common code for control or broadcast purposes. At the MAC level, we focus only on one component of a MAC layer, which is the sleeping mode that could be added to any MAC layer proposal adequate to UWB IR. We are motivated by the low power consumption constraint required by the potential applications. We identify the design elements that should be taken into account for an optimal design for a sleeping protocol for UWB-IR such as the possibility of transmitting concurrently without collision and the power consumption model of the hardware behind which is completely different than with the narrow-band signaling. Then, we design two sleeping protocols for centralized and decentralized ad-hoc networks, respectively. We evaluate their performance analytically with the adopted metric being the average life-time of the wireless nodes

    Filtered multi-carrier modulations for industrial wireless communications based on cognitive radio

    Get PDF
    Doktoretza-tesi honetako helburu nagusia, hari gabeko komunikazio industrialetarako fidagarritasun maila onargarria eman dezakeen maila fisikoko modulazio bat aurkitzea da. Eremu industrialetako radio bidezko kanaletan ematen diren komunikazioetarako baldintza bereziki aurkakoak direla eta, helburu hori lortzea benetako erronkatzat jo liteke. Gainera, modulazio horrek \Radio Cognitiva" deritzoten teknikekin bateragarria izan beharra dauka, hauek hari gabeko komunikazioen fidagarritasuna hobetzeko gaitasuna baitute. Bibliografian oinarrituz, gaur egungo baliabideekin hari gabeko komunikazio industrial kasu ugariri konponbidea emateko aukera badela ondoriozta genezake, baina ez kasu guztiei ordea. Hari gabeko kanalen egoera bereziki aurkakoa denerako eta komunikazio sistemek denbora muga bereziki zorrotzak bete behar dituztenerako, ezta erantzun nahikoa ona eman lezakeen hari gabeko komunikazio sistema industrialik bibliografia zientifikoan. Hori dela eta, doktoretza tesi honetan, \Radio Cognitiva" delakoa eta 5G-rako aurreikusita dauden filtro bankuetan oinarrituriko modulazio multigarraiatzaileak bezalako teknologia hasiberrietara jotzen dugu, aurrez aipaturiko arazoari konponbide berriak bilatu nahian. Bibliografian dauden filtro bankuetan oinarrituriko modulazio multi-garraiatzaileak aztertu eta ondoren beraien egokitasuna ebaluatzen dugu, kanal dispertsiboen aurkako sendotasuna eta \Radio Cognitiva" teknikekin izan lezaketen bateragarritasuna irizpide hartuz. Ebaluaketa horretan oinarrituz, doktoretza-tesi honetan \Radio Cognitiva" teknikekin bateragarria den WCP-COQAM proposatzen dugu modulazio industrial gisa. Modulazio teknika berau erakusteaz gain, bibliografian eskuragarri ez dauden WCP-COQAM-rentzat sinkronizazio eta kanal estimazio teknikak ere aurkezten ditugu.El objetivo principal de esta tesis doctoral consiste en encontrar una modulación de capa física capaz de proporcionar robustez y fiabilidad suficientes a sistemas de comunicaciones inalámbricas industriales. Esto supone un desafío, dadas las adversas condiciones del canal inalámbrico propias de entornos industriales. Además, dicha modulación debería presentar una alta compatibilidad con las técnicas de Radio Cognitiva, debido al potencial de éstas para mejorar la fiabilidad de las comunicaciones inalámbricas. Basándonos en la bibliografía, concluimos que las soluciones presentes en el estado del arte actual cubren una amplia variedad de escenarios dentro de las comunicaciones inalámbricas industriales, pero no todas. Para los escenarios con canales altamente dispersivos y requerimientos de tiempo especialmente estrictos, no existe ninguna solución en la industria ni dentro de la bibliografía científica. En esta tesis doctoral nos centramos en tecnologías incipientes como la Radio Cognitiva y las modulaciones multi-portadora con bancos de filtros para 5G para tratar de buscar nuevas soluciones al problema anteriormente descrito. Por lo tanto, analizamos algunas de las técnicas multi-portadora con bancos de filtros presentes en la bibliografía científica y las evaluamos basándonos en su robustez frente a canales altamente dispersivos y su compatibilidad con la Radio Cognitiva. Basándonos en dicha evaluación, proponemosWCP-COQAM como posible candidata a modulación industrial compatible con Radio Cognitiva. Además de la propia técnica de modulación, presentamos métodos de sincronización y estimación de canal para la misma que no se encuentran presentes en el estado del arte.The main goal of this doctoral thesis is to find a physical layer modulation able to provide high enough robustness and reliability levels for wireless industrial communications systems. Considering the harsh wireless channel conditions of industrial environments, that goal implies a considerable challenge. Besides, this modulation should be highly compatible with Cognitive Radio techniques, due to their potential to improve the reliability of wireless communications. Based on the bibliography, we conclude that the existent solutions in the current state of the art cover a wide range of wireless industrial communications scenarios, but not all of them. There is no solution, neither in the industry nor in the scientific bibliography, for those scenarios involving highly dispersive wireless channels and particularly stringent timeliness requirements. In this doctoral thesis, we focus on upcoming technologies such as Cognitive Radio and multi-carrier modulations based on filter banks for 5G, in order to search new solutions for the aforementioned problem. Therefore, we analyse some of the multi-carrier modulations based on filter banks of the scientific bibliography and we evaluate them in terms of robustness against highly dispersive channels and in terms of compatibility with Cognitive Radio. In this doctoral thesis we propose the modulation WCP-COQAM as possible candidate for industrial wireless modulation and compatible with Cognitive Radio. In addition to the modulation technique itself, we also introduce some synchronization and channel estimation techniques which are not present in the state of the art

    Ultra Low Power Communication Protocols for UWB Impulse Radio Wireless Sensor Networks

    Get PDF
    This thesis evaluates the potential of Ultra Wideband Impulse Radio for wireless sensor network applications. Wireless sensor networks are collections of small electronic devices composed of one or more sensors to acquire information on their environment, an energy source (typically a battery), a microcontroller to control the measurements, process the information and communicate with its peers, and a radio transceiver to enable these communications. They are used to regularly collect information within their deployment area, often for very long periods of time (up to several years). The large number of devices often considered, as well as the long deployment durations, makes any manual intervention complex and costly. Therefore, these networks must self-configure, and automatically adapt to changes in their electromagnetic environment (channel variations, interferers) and network topology modifications: some nodes may run out of energy, or suffer from a hardware failure. Ultra Wideband Impulse Radio is a novel wireless technology that, thanks to its extremely large bandwidth, is more robust to frequency dependent propagation effects. Its impulsional nature makes it robust to multipath fading, as the short duration of the pulses leads most multipath components to arrive isolated. This technology should also enable high precision ranging through time of flight measurements, and operate at ultra low power levels. The main challenge is to design a system that reaches the same or higher degree of energy savings as existing narrowband systems considering all the protocol layers. As these radios are not yet widely available, the first part of this thesis presents Maximum Pulse Amplitude Estimation, a novel approach to symbol-level modeling of UWB-IR systems that enabled us to implement the first network simulator of devices compatible with the UWB physical layer of the IEEE 802.15.4A standard for wireless sensor networks. In the second part of this thesis, WideMac, a novel ultra low power MAC protocol specifically designed for UWB-IR devices is presented. It uses asynchronous duty cycling of the radio transceiver to minimize the power consumption, combined with periodic beacon emissions so that devices can learn each other's wake-up patterns and exchange packets. After an analytical study of the protocol, the network simulation tool presented in the first part of the thesis is used to evaluate the performance of WideMac in a medical body area network application. It is compared to two narrowband and an FM-UWB solutions. The protocol stack parameters are optimized for each solution, and it is observed that WideMac combined to UWB-IR is a credible technology for such applications. Similar simulations, considering this time a static multi-hop network are performed. It is found that WideMac and UWB-IR perform as well as a mature and highly optimized narrowband solution (based on the WiseMAC ULP MAC protocol), despite the lack of clear channel assessment functionality on the UWB radio. The last part of this thesis studies analytically a dual mode MAC protocol named WideMac-High Availability. It combines the Ultra Low PowerWideMac with the higher performance Aloha protocol, so that ultra low power consumption and hence long deployment times can be combined with high performance low latency communications when required by the application. The potential of this scheme is quantified, and it is proposed to adapt it to narrowband radio transceivers by combining WiseMAC and CSMA under the name WiseMAC-HA
    corecore