6 research outputs found

    Combinatorial persistency criteria for multicut and max-cut

    Full text link
    In combinatorial optimization, partial variable assignments are called persistent if they agree with some optimal solution. We propose persistency criteria for the multicut and max-cut problem as well as fast combinatorial routines to verify them. The criteria that we derive are based on mappings that improve feasible multicuts, respectively cuts. Our elementary criteria can be checked enumeratively. The more advanced ones rely on fast algorithms for upper and lower bounds for the respective cut problems and max-flow techniques for auxiliary min-cut problems. Our methods can be used as a preprocessing technique for reducing problem sizes or for computing partial optimality guarantees for solutions output by heuristic solvers. We show the efficacy of our methods on instances of both problems from computer vision, biomedical image analysis and statistical physics

    Automatic Object Segmentation from Calibrated Images

    Get PDF
    This paper addresses the problem of automatically obtaining the object/background segmentation of a rigid 3D object observed in a set of images that have been calibrated for camera pose and intrinsics. Such segmentations can be used to obtain a shape representation of a potentially texture-less object by computing a visual hull. We propose an automatic approach where the object to be segmented is identified by the pose of the cameras instead of user input such as 2D bounding rectangles or brush-strokes. The key behind our method is a pairwise MRF framework that combines (a) foreground/background appearance models, (b) epipolar constraints and (c) weak stereo correspondence into a single segmentation cost function that can be efficiently solved by Graph-cuts. The segmentation thus obtained is further improved using silhouette coherency and then used to update the foreground/background appearance models which are fed into the next Graph-cut computation. These two steps are iterated until segmentation convergences. Our method can automatically provide a 3D surface representation even in texture-less scenes where MVS methods might fail. Furthermore, it confers improved performance in images where the object is not readily separable from the background in colour space, an area that previous segmentation approaches have found challenging

    Robust inversion and detection techniques for improved imaging performance

    Full text link
    Thesis (Ph.D.)--Boston UniversityIn this thesis we aim to improve the performance of information extraction from imaging systems through three thrusts. First, we develop improved image formation methods for physics-based, complex-valued sensing problems. We propose a regularized inversion method that incorporates prior information about the underlying field into the inversion framework for ultrasound imaging. We use experimental ultrasound data to compute inversion results with the proposed formulation and compare it with conventional inversion techniques to show the robustness of the proposed technique to loss of data. Second, we propose methods that combine inversion and detection in a unified framework to improve imaging performance. This framework is applicable for cases where the underlying field is label-based such that each pixel of the underlying field can only assume values from a discrete, limited set. We consider this unified framework in the context of combinatorial optimization and propose graph-cut based methods that would result in label-based images, thereby eliminating the need for a separate detection step. Finally, we propose a robust method of object detection from microscopic nanoparticle images. In particular, we focus on a portable, low cost interferometric imaging platform and propose robust detection algorithms using tools from computer vision. We model the electromagnetic image formation process and use this model to create an enhanced detection technique. The effectiveness of the proposed technique is demonstrated using manually labeled ground-truth data. In addition, we extend these tools to develop a detection based autofocusing algorithm tailored for the high numerical aperture interferometric microscope

    3D Motion Analysis via Energy Minimization

    Get PDF
    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to computing the apparent image motion vector field. Furthermore this results currently in the most accurate motion estimation techniques in literature. Much as this is an engineering approach of fine-tuning precision to the last detail, it helps to get a better insight into the problem of motion estimation. This profoundly contributes to state-of-the-art research in motion analysis, in particular facilitating the use of motion estimation in a wide range of applications. In Chapter 5, scene flow is rethought. Scene flow stands for the three-dimensional motion vector field for every image pixel, computed from a stereo image sequence. Again, decoupling of the commonly coupled approach of estimating three-dimensional position and three dimensional motion yields an approach to scene ow estimation with more accurate results and a considerably lower computational load. It results in a dense scene flow field and enables additional applications based on the dense three-dimensional motion vector field, which are to be investigated in the future. One such application is the segmentation of moving objects in an image sequence. Detecting moving objects within the scene is one of the most important features to extract in image sequences from a dynamic environment. This is presented in Chapter 6. Scene flow and the segmentation of independently moving objects are only first steps towards machine visual kinesthesia. Throughout this work, I present possible future work to improve the estimation of optical flow and scene flow. Chapter 7 additionally presents an outlook on future research for driver assistance applications. But there is much more to the full understanding of the three-dimensional dynamic scene. This work is meant to inspire the reader to think outside the box and contribute to the vision of building perceiving machines.</em
    corecore