103 research outputs found

    Recursive cubes of rings as models for interconnection networks

    Full text link
    We study recursive cubes of rings as models for interconnection networks. We first redefine each of them as a Cayley graph on the semidirect product of an elementary abelian group by a cyclic group in order to facilitate the study of them by using algebraic tools. We give an algorithm for computing shortest paths and the distance between any two vertices in recursive cubes of rings, and obtain the exact value of their diameters. We obtain sharp bounds on the Wiener index, vertex-forwarding index, edge-forwarding index and bisection width of recursive cubes of rings. The cube-connected cycles and cube-of-rings are special recursive cubes of rings, and hence all results obtained in the paper apply to these well-known networks

    Outerplanar crossing numbers, the circular arrangement problem and isoperimetric functions

    Get PDF
    We extend the lower bound in [15] for the outerplanar crossing number (in other terminologies also called convex, circular and one-page book crossing number) to a more general setting. In this setting we can show a better lower bound for the outerplanar crossing number of hypercubes than the best lower bound for the planar crossing number. We exhibit further sequences of graphs, whose outerplanar crossing number exceeds by a factor of log n the planar crossing number of the graph. We study the circular arrangement problem, as a lower bound for the linear arrangement problem, in a general fashion. We obtain new lower bounds for the circular arrangement problem. All the results depend on establishing good isoperimetric functions for certain classes of graphs. For several graph families new near-tight isoperimetric functions are established

    Graphs with optimal forwarding indices: What is the best throughput you can get with a given number of edges?

    Get PDF
    The (edge) forwarding index of a graph is the minimum, over all possible routings of all the demands, of the maximum load of an edge. This metric is of a great interest since it captures the notion of global congestion in a precise way: the lesser the forwarding-index, the lesser the congestion. In this paper, we study the following design question: Given a number e of edges and a number n of vertices, what is the least congested graph that we can construct? and what forwarding-index can we achieve? Our problem has some distant similarities with the well-known (∆,D) problem, and we sometimes build upon results obtained on it. The goal of this paper is to study how to build graphs with low forwarding indices and to understand how the number of edges impacts the forwarding index. We answer here these questions for different families of graphs: general graphs, graphs with bounded degree, sparse graphs with a small number of edges by providing constructions, most of them asymptotically optimal. Hence, our results allow to understand how the forwarding-index drops when edges are added to a graph and also to determine what is the best (i.e least congested) structure with e edges. Doing so, we partially answer the practical problem that initially motivated our work: If an operator wants to power only e links of its network, in order to reduce the energy consumption (or wiring cost) of its networks, what should be those links and what performance can be expected

    FROBENIUS CIRCULANT GRAPHS OF VALENCY FOUR

    Get PDF

    Disjoint Hamilton cycles in transposition graphs

    Get PDF
    Most network topologies that have been studied have been subgraphs of transposition graphs. Edge-disjoint Hamilton cycles are important in network topologies for improving fault-tolerance and distribution of messaging traffic over the network. Not much was known about edge-disjoint Hamilton cycles in general transposition graphs until recently Hung produced a construction of 4 edge-disjoint Hamilton cycles in the 5-dimensional transposition graph and showed how edge-disjoint Hamilton cycles in (n + 1)-dimensional transposition graphs can be constructed inductively from edge-disjoint Hamilton cycles in n-dimensional transposition graphs. In the same work it was conjectured that n-dimensional transposition graphs have n − 1 edge-disjoint Hamilton cycles for all n greater than or equal to 5. In this paper we provide an edge-labelling for transposition graphs and, by considering known Hamilton cycles in labelled star subgraphs of transposition graphs, are able to provide an extra edge-disjoint Hamilton cycle at the inductive step from dimension n to n + 1, and thereby prove the conjecture

    On the relationship between continuous- and discrete-time quantum walk

    Full text link
    Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete-time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.Comment: 22 pages. v2: improved presentation, new section on Hamiltonian oracles; v3: published version, with improved analysis of phase estimatio
    corecore