7,753 research outputs found

    The edge-disjoint path problem on random graphs by message-passing

    Get PDF
    We present a message-passing algorithm to solve the edge disjoint path problem (EDP) on graphs incorporating under a unique framework both traffic optimization and path length minimization. The min-sum equations for this problem present an exponential computational cost in the number of paths. To overcome this obstacle we propose an efficient implementation by mapping the equations onto a weighted combinatorial matching problem over an auxiliary graph. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behaviour of both the number of paths to be accommodated and their minimum total length.Comment: 14 pages, 8 figure

    Pre-Reduction Graph Products: Hardnesses of Properly Learning DFAs and Approximating EDP on DAGs

    Full text link
    The study of graph products is a major research topic and typically concerns the term f(G∗H)f(G*H), e.g., to show that f(G∗H)=f(G)f(H)f(G*H)=f(G)f(H). In this paper, we study graph products in a non-standard form f(R[G∗H]f(R[G*H] where RR is a "reduction", a transformation of any graph into an instance of an intended optimization problem. We resolve some open problems as applications. (1) A tight n1−ϵn^{1-\epsilon}-approximation hardness for the minimum consistent deterministic finite automaton (DFA) problem, where nn is the sample size. Due to Board and Pitt [Theoretical Computer Science 1992], this implies the hardness of properly learning DFAs assuming NP≠RPNP\neq RP (the weakest possible assumption). (2) A tight n1/2−ϵn^{1/2-\epsilon} hardness for the edge-disjoint paths (EDP) problem on directed acyclic graphs (DAGs), where nn denotes the number of vertices. (3) A tight hardness of packing vertex-disjoint kk-cycles for large kk. (4) An alternative (and perhaps simpler) proof for the hardness of properly learning DNF, CNF and intersection of halfspaces [Alekhnovich et al., FOCS 2004 and J. Comput.Syst.Sci. 2008]

    Multi-hop Byzantine reliable broadcast with honest dealer made practical

    Get PDF
    We revisit Byzantine tolerant reliable broadcast with honest dealer algorithms in multi-hop networks. To tolerate Byzantine faulty nodes arbitrarily spread over the network, previous solutions require a factorial number of messages to be sent over the network if the messages are not authenticated (e.g., digital signatures are not available). We propose modifications that preserve the safety and liveness properties of the original unauthenticated protocols, while highly decreasing their observed message complexity when simulated on several classes of graph topologies, potentially opening to their employment

    Edge- and Node-Disjoint Paths in P Systems

    Full text link
    In this paper, we continue our development of algorithms used for topological network discovery. We present native P system versions of two fundamental problems in graph theory: finding the maximum number of edge- and node-disjoint paths between a source node and target node. We start from the standard depth-first-search maximum flow algorithms, but our approach is totally distributed, when initially no structural information is available and each P system cell has to even learn its immediate neighbors. For the node-disjoint version, our P system rules are designed to enforce node weight capacities (of one), in addition to edge capacities (of one), which are not readily available in the standard network flow algorithms.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
    • …
    corecore