2,065 research outputs found

    On Maximum Cycle Packings in Polyhedral Graphs

    Full text link
    This paper addresses upper and lower bounds for the cardinality of a maximum vertex-/edge-disjoint cycle packing in a polyhedral graph G. Bounds on the cardinality of such packings are provided, that depend on the size, the order or the number of faces of G, respectively. Polyhedral graphs are constructed, that attain these bounds

    Perfect packings with complete graphs minus an edge

    Get PDF
    Let K_r^- denote the graph obtained from K_r by deleting one edge. We show that for every integer r\ge 4 there exists an integer n_0=n_0(r) such that every graph G whose order n\ge n_0 is divisible by r and whose minimum degree is at least (1-1/chi_{cr}(K_r^-))n contains a perfect K_r^- packing, i.e. a collection of disjoint copies of K_r^- which covers all vertices of G. Here chi_{cr}(K_r^-)=r(r-2)/(r-1) is the critical chromatic number of K_r^-. The bound on the minimum degree is best possible and confirms a conjecture of Kawarabayashi for large n

    Packing spanning graphs from separable families

    Full text link
    Let G\mathcal G be a separable family of graphs. Then for all positive constants ϵ\epsilon and Δ\Delta and for every sufficiently large integer nn, every sequence G1,…,Gt∈GG_1,\dotsc,G_t\in\mathcal G of graphs of order nn and maximum degree at most Δ\Delta such that e(G1)+⋯+e(Gt)≤(1−ϵ)(n2)e(G_1)+\dotsb+e(G_t) \leq (1-\epsilon)\binom{n}{2} packs into KnK_n. This improves results of B\"ottcher, Hladk\'y, Piguet, and Taraz when G\mathcal G is the class of trees and of Messuti, R\"odl, and Schacht in the case of a general separable family. The result also implies approximate versions of the Oberwolfach problem and of the Tree Packing Conjecture of Gy\'arf\'as (1976) for the case that all trees have maximum degree at most Δ\Delta. The proof uses the local resilience of random graphs and a special multi-stage packing procedure

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved
    • …
    corecore