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Abstract

Let K −
r denote the graph obtained from Kr by deleting one edge. We show that for every integer r ≥ 4

there exists an integer n0 = n0(r) such that every graph G whose order n ≥ n0 is divisible by r and whose
minimum degree is at least (1 − 1/χcr (K −

r ))n contains a perfect K −
r -packing, i.e. a collection of disjoint

copies of K −
r which covers all vertices of G. Here χcr (K −

r ) =
r(r−2)

r−1 is the critical chromatic number of
K −

r . The bound on the minimum degree is best possible and confirms a conjecture of Kawarabayashi for
large n.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Given two graphs H and G, an H -packing in G is a collection of vertex-disjoint copies of
H in G. An H -packing in G is called perfect if it covers all vertices of G. In this case, we
also say that G contains an H -factor. The aim now is to find natural conditions on G which
guarantee the existence of a perfect H -packing in G. For example, a famous theorem of Hajnal
and Szemerédi [6] gives a best possible condition on the minimum degree of G which ensures
that G has a perfect Kr -packing. More precisely, it states that every graph G whose order n is
divisible by r and whose minimum degree is at least (1 − 1/r)n contains a perfect Kr -packing.
(The case r = 3 was proved earlier by Corrádi and Hajnal [4] and the case r = 2 follows
immediately from Dirac’s theorem on Hamilton cycles.)

Alon and Yuster [2] proved an extension of this result to perfect packings of arbitrary graphs
H . They showed that for every γ > 0 and each graph H there exists an integer n0 = n0(γ, H)

such that every graph G whose order n ≥ n0 is divisible by |H | and whose minimum degree is at
least (1−1/χ(H)+γ )n contains a perfect H -packing. They observed that there are graphs H for
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which the error term γ n cannot be omitted completely, but conjectured that it could be replaced
by a constant which depends only on H . This conjecture was proved by Komlós, Sárközy and
Szemerédi [10].

Thus one might think that just as in Turán theory – where instead of an H -packing one
only asks for a single copy of H – the chromatic number of H is the crucial parameter when
one considers H -packings. However, one indication that this is not the case is provided by
the result of Komlós [9], which states that if one only requires an almost perfect H -packing
(i.e. one which covers almost all of the vertices of G), then the relevant parameter is the critical
chromatic number of H . Here the critical chromatic number χcr (H) of a graph H is defined as
(χ(H) − 1)|H |/(|H | − σ(H)), where σ(H) denotes the minimum size of the smallest colour
class in a colouring of H with χ(H) colours and where |H | denotes the order of H . Note that
χcr (H) always satisfies χ(H) − 1 < χcr (H) ≤ χ(H) and is closer to χ(H) − 1 if σ(H) is
comparatively small. Building on this, in [11] it was shown that for some graphs H the critical
chromatic number is even the relevant parameter for perfect packings, while for all other graphs
the relevant parameter is the chromatic number. In order to state the precise result (Theorem 1)
we need to introduce some notation. A colouring of a graph H is called optimal if it uses exactly
χ(H) colours. Let ` := χ(H). Given an optimal colouring c of H , let x1 ≤ x2 ≤ · · · ≤ x`

be the sizes of the colour classes. Define D(c) = {xi+1 − xi | i = 1, . . . , ` − 1}. Let D(H)

be the union of all the sets D(c) over all optimal colourings c of H . We define hcfχ (H) to be
the highest common factor of the elements of D(H) (or hcfχ (H) := ∞ if D(H) = {0}). Define
hcfc(H) to be the highest common factor of the orders of all the components of H . For any graph
H , if χ(H) 6= 2, we say hcf(H) = 1 if hcfχ (H) = 1. If χ(H) = 2, we say hcf(H) = 1 if both
hcfc(H) = 1 and hcfχ (H) ≤ 2.

Theorem 1 ([11]). Given a graph H, let δ(H, n) denote the smallest integer k such that every
graph G whose order n is divisible by |H | and with δ(G) ≥ k contains a perfect H-packing.
Then

δ(H, n) =


(

1 −
1

χcr (H)

)
n + O(1) if hcf(H) = 1,(

1 −
1

χ(H)

)
n + O(1) if hcf(H) 6= 1.

Here the O(1) error term depends only on H and there are graphs H for which it cannot be
omitted completely (see Proposition 4). Also, note that the upper bound on δ(H, n) in the case
when hcf(H) 6= 1 is the result in [10] mentioned earlier. The proof in [11] for the case when
hcf(H) = 1 gave a constant which was dependent on the constant in Szemerédi’s regularity
lemma, and is therefore huge.

Our main result shows that in the case when H = K −
r , where r ≥ 4, the error term in

Theorem 1 can be omitted completely. (Recall that K −
r denotes the graph obtained from Kr by

deleting one edge.) Note that hcf(K −
r ) = 1 for r ≥ 4.

Theorem 2. For every integer r ≥ 4 there exists an integer n0 = n0(r) such that every graph G
whose order n ≥ n0 is divisible by r and whose minimum degree is at least(

1 −
1

χcr (K −
r )

)
n

contains a perfect K −
r -packing.
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This theorem confirms a conjecture of Kawarabayashi [7] for large n. The case r = 4
of the conjecture (and thus of Theorem 2) was proved by Kawarabayashi [7]. By a result of
Enomoto, Kaneko and Tuza [5], the conjecture also holds for the case r = 3 under the additional
assumption that G is connected. (Note that K −

3 is just a path on 3 vertices and that in this case
the required minimum degree equals n/3.) For completeness, in Proposition 3 we will give
an explicit construction showing that the bound on the minimum degree in Theorem 2 is best
possible.

Clearly, it would be desirable to characterize all those graphs for which the O(1)-error term
in Theorem 1 can be omitted. However, we do not know what such a characterization might look
like. By the Hajnal–Szemerédi theorem [6] the error term can be omitted for complete graphs. A
result of Abbasi [1] implies that, for large n, it can be omitted for cycles. In [3] the first author
describes a further class of graphs for which the ideas in this paper can be adapted to remove
the error term completely for large n. On the other hand, Proposition 4 shows that the error term
cannot be omitted if H is a complete `-partite graph with ` ≥ 3 and at least ` − 1 vertex classes
of size at least 3. A larger class of graphs H for which this is the case is given in [3].

Algorithmic issues related to Theorem 1 are discussed in [12]. It was shown there that for any
ε > 0 the perfect H -packing guaranteed by Theorem 1 can be found in polynomial time if the
O(1)-error term is replaced by εn. Moreover, if the minimum degree condition on G is reduced
a little below the threshold, then there are many graphs H for which the decision problem of
whether G has a perfect H -packing becomes NP-complete.

2. Notation and preliminaries

Throughout this paper we omit floors and ceilings whenever this does not affect the argument.
We write e(G) for the number of edges of a graph G, |G| for its order, δ(G) for its minimum
degree, ∆(G) for its maximum degree, χ(G) for its chromatic number and χcr (G) for its critical
chromatic number as defined in Section 1. We denote the degree of a vertex x ∈ G by dG(x)

and its neighbourhood by NG(x). Given a vertex set A ⊆ V (G), we also write NA(x) for the set
of all neighbours of x in A. We denote by G[A] the subgraph of G induced by the vertex set A.
Given disjoint sets A, B ⊆ V (G), we denote by e(A, B) the number of all edges between A and
B and write d(A, B) := e(A, B)/|A||B| for the density of the bipartite subgraph of G between
A and B. We denote by d(A) := e(A)/

(
|A|

2

)
the density of A.

For a graph H of chromatic number `, define the bottle graph B∗(H) of H , to be the complete
`-partite graph which has ` − 1 classes of size |H | − σ(H) and one class of size (` − 1)σ (H).
(Recall that σ(H) is the smallest possible size of a colour class in an `-colouring of H .) Thus
B∗(H) contains a perfect H -packing consisting of ` − 1 copies of H . We will use B∗ to denote
B∗(K −

r ) whenever this is unambiguous.
For completeness, we include the construction which shows that the bound on the minimum

degree in Theorem 2 is best possible.

Proposition 3. Let r ≥ 4. Then for all k ∈ N there is a graph G on n = kr vertices whose
minimum degree is

⌈
(1 − 1/χcr (K −

r ))n
⌉

− 1 but which does not contain a perfect K −
r -packing.

Proof. We construct G as follows. G is a complete (r − 1)-partite graph with vertex classes
U0, . . . , Ur−2, where |U0| = k − 1 and the sizes of all other classes are as equal as possible.
It is easy to check that G has the required minimum degree. Moreover, every copy of K −

r in G
contains at least one vertex in U0. Thus we can find at most |U0| pairwise disjoint copies of K −

r
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which therefore cover at most (k − 1)(r − 1) < n − |U0| vertices of G − U0. Thus G does not
contain a perfect K −

r -packing. �

Note that Proposition 3 extends to every graph H which is obtained from a Kr−1 by adding a
new vertex and joining it to at most r − 2 vertices of the Kr−1. Since each such H is a subgraph
of K −

r and since χcr (H) = χcr (K −
r ), it follows from this observation and from Theorem 2

that δ(H, n) = d(1 − 1/χcr (H))ne if n is sufficiently large (where δ(H, n) is as defined in
Theorem 1).

The following example shows that for a large class of graphs, the O(1)-error term in
Theorem 1 cannot be omitted completely. The example is an extension of a similar construction
in [10].

Proposition 4. Suppose that H is a complete `-partite graph with ` ≥ 3 such that every
vertex class of H, except possibly its smallest class, has at least 3 vertices. Then there are
infinitely many graphs G whose order n is divisible by |H |, whose minimum degree satisfies
δ(G) = (1 −

1
χcr (H)

)n but which do not contain a perfect H-packing.

Proof. Let σ denote the size of the smallest vertex class of H . Given k ∈ N, consider the
complete `-partite graph on n := k(` − 1)|H | vertices whose vertex classes A1, . . . , A` satisfy
|A1| := (|H | − σ)k + 1, |A`| := k(` − 1)σ − 1 and |Ai | := (|H | − σ)k for all 1 < i < `.
Let G be the graph obtained by adding a perfect matching into A1 or, if |A1| is odd, a matching
covering all but 3 vertices and a path of length 2 on these remaining vertices. Observe that the
minimum degree of G is (1 −

1
χcr (H)

)n.
Consider any copy H ′ of H in G. Suppose that H ′ meets A` in at most σ − 1 vertices. Then

there is a colour class X of H ′ which meets A` but does not lie entirely in A`. So some vertex
class of G must meet at least two colour classes of H ′. Since H ′ is complete `-partite, this vertex
class must have some edges in it, and so must be A1. However, A1 cannot meet three colour
classes of H ′, since it is triangle free. Thus every colour class of H ′ except X lies completely
within one Ai . Furthermore, A1 cannot contain two complete colour classes of H ′, since then
G[A1] would have a vertex of degree 3, a contradiction. So A1 meets X as well as another colour
class Y of H ′. Furthermore X \ A` ⊆ A1 and Y ⊆ A1. Let x ∈ X ∩ A1. Then Y ⊆ NG(x)

since Y ⊆ NH ′(x). This implies that |Y | ≤ 2 and so σ = |Y | ≤ 2. Thus |X | ≥ 3. Since at most
σ − 1 ≤ 1 vertices of X lie in A` this in turn implies that |X ∩ A1| ≥ 2. As X ∩ A1 lies in the
neighbourhood of any vertex from Y , we must have that |X ∩ A1| = 2. Thus X ∩ A1 can only
lie in the neighbourhood of one vertex from Y . Hence σ = |Y | = 1. But then X avoids A`, a
contradiction.

So any copy of H in G has at least σ vertices in A`. Thus any H -packing in G consists of
less than k(` − 1) copies of H and therefore covers less than k(` − 1)(|H | − σ) < |G| − |A`|

vertices of G − A`. So G does not contain a perfect H -packing. �

Note that the proof of Proposition 4 shows that if |H |−σ is odd then we only need that every
vertex class of H (except possibly its smallest class) has at least two vertices. Moreover, it is
not hard to see that the conclusion of Proposition 4 holds for all graphs H which do not have a
colouring with a vertex class of size σ + 1 (see [3] for details).

In the proof of Theorem 2 we will use the following observation about packings in almost
complete (q + 1)-partite graphs. It follows easily from the blow-up lemma (see e.g. [8]), but we
also sketch how it can be deduced directly from Hall’s theorem.
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Proposition 5. For all q, r ∈ N there exists a positive constant τ0 = τ0(q, r) such that the
following holds for every τ ≤ τ0 and all k ∈ N. Let Hq,r be the complete (q + 1)-partite graph
with q vertex classes of size r and one vertex class of size 1. Let G∗ be a (q + 1)-partite graph
with vertex classes V1, . . . , Vq+1 such that |Vi | = kr for all i ≤ q and such that |Vq+1| = k.
Suppose that for all distinct i, j ≤ q + 1 every vertex x ∈ Vi of G∗ is adjacent to all but at most
τ |V j | vertices in V j . Then G∗ has a perfect Hq,r -packing.

Proof. We proceed by induction on q. If q = 1 then we are looking for a perfect K1,r -packing.
So the result can easily be deduced from Hall’s theorem with τ0 = 1/2. Now suppose that q > 1
and let τ0(q, r) � τ0(q −1, r). As before, we can find a perfect K1,r -packing in G∗

[Vq ∪ Vq+1].
Let G ′ be the graph obtained from G∗ by replacing each copy K of such a K1,r with one vertex
xK and joining xK to y ∈ V1 ∪ · · · ∪ Vq−1 whenever y is adjacent to every vertex of K . Then
G ′ contains a perfect Hq−1,r -packing by induction. Clearly, this corresponds to a perfect Hq,r -
packing in G∗. �

3. Overview of the proof

Our main tool is the following result from [11]. It states that in the “non-extremal case”, where
the graph G given in Theorem 1 satisfies certain conditions, we can find a perfect packing even
if the minimum degree is slightly smaller than required in Theorem 1. The conditions ensure
that the graph G does not look too much like one of the extremal examples of graphs whose
minimum degree is just a little smaller than required in Theorem 1 but which do not contain a
perfect H -packing.

Theorem 6. Let H be a graph of chromatic number ` ≥ 2 with hcf(H) = 1. Let z1 denote the
size of the small class of the bottle graph B∗(H), let z denote the size of one of the large classes,
and let ξ = z1/z. Let θ � τ0 � ξ, 1 − ξ, 1/|B∗(H)| be positive constants. There exists an
integer n0 such that the following holds. Suppose G is a graph whose order n ≥ n0 is divisible
by |B∗(H)| and whose minimum degree satisfies δ(G) ≥ (1−

1
χcr (H)

− θ)n. Suppose that G also
satisfies the following conditions:

(i) G does not contain a vertex set A of size zn/|B∗(H)| such that d(A) ≤ τ0.
(ii) If ` = 2, then G does not contain a vertex set A with d(A, V (G) \ A) ≤ τ0.

Then G has a perfect H-packing.

By applying this theorem with H := K −
r (where r ≥ 4), we only need to consider the

extremal case, when there are large almost independent sets. (Note that if the order of the graph
G given by Theorem 2 is not divisible by |B∗(K −

r )|, we must first greedily remove some copies
of K −

r before applying Theorem 6. The existence of these copies follows from the Erdős–Stone
theorem, and since we only need to remove a bounded number of copies, this will not affect any
of the properties required in Theorem 6 significantly.)

Suppose that we have q such large almost independent sets. Then we will think of the
remainder of the vertices of G as the (q + 1)th set. We will show in Section 4 that by taking
out a few copies of K −

r and rearranging these q + 1 sets slightly, we can achieve that these sets
will induce an almost complete (q + 1)-partite graph. Furthermore, the proportion of the size of
each of the first q of these modified sets to the size of the entire graph will be the same as for the
large classes of the bottle graph B∗(K −

r ) defined in Section 2.
Let B∗

1 be the subgraph of B∗(K −
r ) obtained by deleting q of the large vertex classes. Ideally,

we would like to apply Theorem 6 to find a B∗

1 -packing in the (remaining) subgraph of G induced
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by the (q + 1)th vertex set. In a second step we would then like to extend this B∗

1 -packing to a
B∗(K −

r )-packing in G, using the fact that the (q + 1)-partite subgraph of G between the classes
defined above is almost complete. This would clearly yield a K −

r -packing of G.
However, there are some difficulties. For example, Theorem 6 only applies to graphs H with

hcf(H) = 1, and this may not be the case for B∗

1 if it is bipartite. So instead of working with B∗

1 ,
we consider a suitable subgraph B1 of B∗

1 which does satisfy hcf(B1) = 1. Moreover, if B1 is
bipartite we may have to take out a few further carefully chosen copies of K −

r from G to ensure
that condition (ii) is also satisfied before we can apply Theorem 6 to the subgraph induced by the
(q + 1)th vertex set.

4. Tidying up the classes

Let n and q be integers such that n is divisible by r(r − 2) = |B∗(K −
r )| and such that

1 ≤ q ≤ r − 2. Note that in the case when H := K −
r the set A in condition (i) of Theorem 6 has

size r−1
r(r−2)

n. We say that disjoint vertex sets A1, . . . , Aq+1 are (q, n)-canonical if |Ai | =
r−1

r(r−2)
n

for all i ≤ q and |Aq+1| =
n
r + (r − q − 2) r−1

r(r−2)
n = n −

∑q
i=1 |Ai |. Note that in this case

the graph K (q, n) obtained from the complete graph on
⋃q+1

i=1 Ai by making each Ai with i ≤ q
into an independent set has a perfect B∗(K −

r )-packing and thus also a perfect K −
r -packing.

Our aim in the following lemma is to remove a few disjoint copies of K −
r from our given

graph G in order to obtain a graph on n∗ vertices which looks almost like K (q, n∗). In the next
section we will then use this property to show that this subgraph of G has a perfect K −

r -packing.

Lemma 7. Let r ≥ 4 and 0 < τ � 1/r . Then there exists an integer n0 = n0(r, τ ) such that
the following is true. Let G be a graph whose order n ≥ n0 is divisible by r and whose minimum
degree satisfies δ(G) ≥ (1−

1
χcr (K −

r )
)n. Suppose that for some 1 ≤ q ≤ r −2 there are q disjoint

vertex sets A1, . . . , Aq in G such that |Ai | = d
r−1

r(r−2)
ne and d(Ai ) ≤ τ for 1 ≤ i ≤ q. Set

Aq+1 := V (G) \ (A1 ∪ · · · ∪ Aq). Then there exist disjoint vertex sets A∗

1, . . . , A∗

q+1 such that
the following hold:

(i) If G∗
:= G[

⋃q+1
i=1 A∗

i ] and n∗
:= |G∗

| then r(r − 2) divides n∗, and G − G∗ contains a
perfect K −

r -packing. Furthermore, n − n∗
≤ τ 1/3n.

(ii) |A∗

1| = |A∗

2| = · · · = |A∗
q | =

r−1
r(r−2)

n∗.

(iii) For all i, j ≤ q + 1 with i 6= j , each vertex in A∗

i has at least (1 − τ 1/5)|A∗

j | neighbours in
A∗

j .

Proof. Note that if n is divisible by r(r − 2) then the sets A1, . . . , Aq+1 are (q, n)-canonical.
If n is not divisible by r(r − 2) then we will change the sizes of the Ai slightly as follows.
Write n = n′

+ kr where n′ is divisible by r(r − 2) and 0 < k < r − 2. If k ≥ q then we do
not change the sizes of the Ai . If k < q then for each i with k < i ≤ q we move one vertex
from Ai to Aq+1. We still denote the sets thus obtained by A1, . . . , Aq+1. We may choose the
vertices we move in such a way that the density of each Ai with i ≤ q is still at most τ . Note that
d

r−1
r(r−2)

ne =
r−1

r(r−2)
n′

+ k + 1. Thus both in the case when k ≥ q and in the case when k < q
the sets A1, . . . , Aq+1 can be obtained from (q, n′)-canonical sets by adding kr new vertices as
follows. For each i ≤ min{k, q} we add k + 1 of the new vertices to the i th vertex set, for each
i with min{k, q} < i ≤ q we add k new vertices to the i th vertex set and all the remaining new
vertices are added to Aq+1. Let K be the graph obtained from the complete graph on

⋃q+1
i=1 Ai by
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making each Ai with i ≤ q into an independent set. It is easy to see that K (q, n′) can be obtained
from K by removing k disjoint copies of K −

r . In particular, K has a perfect K −
r -packing. Note

that if k < q then this would not hold if we had not changed the sizes of the Ai . Later on we will
use that in all cases we have

|Ai | ≥
r − 1

r(r − 2)
n′

+ k =
r − 1

r(r − 2)
(n − kr) + k (1)

for all i ≤ q , where we set n′
:= n and k := 0 if n is divisible by r(r − 2). Observe that

χcr (K −
r ) =

r(r−2)
r−1 and so δ(G) ≥ (1 −

r−1
r(r−2)

)n. Thus the minimum degree condition on G
implies that the neighbours of any vertex might essentially avoid one of the Ai , for i ≤ q, but no
more.

Now for each index i , call a vertex x ∈ Ai i-bad if x has at least τ 1/3
|Ai | neighbours in Ai .

Note that, for i ≤ q , the number of i-bad vertices is at most τ 2/3
|Ai | since d(Ai ) ≤ τ for such i .

Call a vertex x ∈ Ai i-useless if, for some j 6= i , x has at most (1 − τ 1/4)|A j | neighbours in A j .
In this case the minimum degree condition shows that, provided i 6= r − 1, x must have at least a
τ 1/3-fraction of the vertices in its own class as neighbours, i.e. x is i-bad. Thus every vertex that
is i-useless is also i-bad for i 6= r − 1. In particular, for each i ≤ q, there are at most τ 2/3

|Ai |

i-useless vertices.
For i = q +1 we estimate the number uq+1 of (q +1)-useless vertices by looking at the edges

between Aq+1 and V (G) \ Aq+1. We have

e(Aq+1, V (G) \ Aq+1) ≥

q∑
i=1

{
|Ai |δ(G) − 2e(Ai ) −

∑
j 6=i, j≤q

|Ai ||A j |

}
≥ q(|A1| − 1)δ(G) − qτ |A1|

2
− q(q − 1)|A1|

2.

On the other hand,

e(Aq+1, V (G) \ Aq+1) ≤ uq+1{(q − 1)|A1| + (1 − τ 1/4)|A1|} + (|Aq+1| − uq+1)q|A1|

= q|A1||Aq+1| − uq+1τ
1/4

|A1|.

Combining these inequalities gives, after some calculations, that uq+1 ≤ τ 2/3
|Aq+1|. So in total

the number of vertices which are i-useless for some i is at most τ 2/3n.
Given j 6= i , call a vertex x ∈ Ai j-exceptional if x has at most τ 1/3

|A j | neighbours in
A j . Thus every such vertex is also i-useless, and therefore i-bad if i < r − 1. Furthermore, if
i = r − 1, then an exceptional vertex in Ai is also i-bad. So all exceptional vertices are bad.

Now if for some i 6= j there exists an i-bad vertex x ∈ Ai and an i-exceptional vertex y ∈ A j ,
then let us swap x and y. (Note that a vertex is not i-exceptional for more than one i .) Having
done this, since there are not too many exceptional vertices, we will still have that each non-bad
vertex in Ai has at most 2τ 1/3

|Ai | neighbours in Ai , each non-useless vertex in Ai still has at
least (1 − 2τ 1/4)|A j | neighbours in each A j with j 6= i and each non-i-exceptional vertex still
has at least τ 1/3

|Ai |/2 neighbours in Ai . We will also have that for any i for which i-exceptional
vertices exist, there are no i-bad vertices.

We now wish to remove all the exceptional vertices by taking out a few disjoint copies of K −
r

which will cover them. For simplicity, we will split the argument into two cases. In both cases
we will repeatedly remove r − 2 disjoint copies of K −

r at a time. We say that such a collection
of r − 2 copies respects the proportions of the Ai if altogether these copies meet each Ai with
i ≤ q in exactly r − 1 vertices.
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Case 1. q ≤ r − 3
In this case the minimum degree condition ensures that no vertex is (q + 1)-exceptional. To

deal with the j-exceptional vertices for j ≤ q we will need the fact that we can find a reasonably
large number of disjoint copies of Kr−1−q in G[Aq+1]. To prove this fact, observe that

δ(G[Aq+1]) ≥ δ(G) −

q∑
i=1

|Ai | ≥ |Aq+1| −
r − 1

r(r − 2)
n (2)

and

r − 1
r(r − 2)

n
|Aq+1|

(1)
≤

r − 1
r(r − 2)

1
1
r + (r − q − 2) r−1

r(r−2)

≤
1

r − q − 2
− c(r) (3)

where c(r) > 0 is a constant depending only on r . Combining these results gives

δ(G[Aq+1]) ≥

(
1 −

1
r − q − 2

+ c(r)

)
|Aq+1|. (4)

Thus we can apply Turán’s theorem repeatedly to find at least c(r)
r−q−1 |Aq+1| disjoint copies of

Kr−q−1 in G[Aq+1].
Now for each i ≤ q + 1 in turn, consider the exceptional vertices x ∈ Ai . Suppose that x is

j-exceptional. First move x into A j . Note that the minimum degree condition on G means that x
is joined to almost all vertices in A` for every ` 6= j . We greedily choose a copy of K −

r covering
x and one other vertex in A j , r −q −1 vertices in Aq+1 and one vertex in all other classes, where
all vertices other than x were chosen to be non-useless. (Indeed, to find such a copy of K −

r we
first choose a copy of Kr−q−1 in Aq+1 which lies in the neighbourhood of x and which consists
of non-useless vertices. Then we choose all the remaining vertices.) Remove this copy of K −

r .
Also greedily remove r − 3 further disjoint copies of K −

r such that together all these copies of
K −

r respect the proportions of the Ai . Proceed similarly for all the exceptional vertices. For each
exceptional vertex we are removing r − 2 copies of K −

r , so in total we are removing at most
r(r − 2)τ 2/3n vertices.
Case 2. q = r − 2

In this case, the exceptional vertices in Ar−1 need special attention since we cannot simply
move them into another class without making Ar−1 too small. So we proceed as follows. For
each i ≤ r − 2, let si be the number of i-exceptional vertices in Ar−1. Whenever si > 0 we
will find a matching of size si in G[Ai ]. To see that such a matching exists, consider a maximal
matching in Ai and let m denote the size of this matching. Note that

e(Ai ) ≤ 2m∆(Ai ) ≤ 2m2τ 1/3
|Ai |

since the presence of i-exceptional vertices guarantees that no vertex in Ai is i-bad. Also

e(Ai ) ≥
1
2
{δ(G)|Ai | − (n − |Ai | − si )|Ai | − si 2τ 1/3

|Ai |}

≥
|Ai |

2

{
|Ai | −

r − 1
r(r − 2)

n + si (1 − 2τ 1/3)

}
(1)
≥

|Ai |

2

{
si (1 − 2τ 1/3) −

k
r − 2

}
.

Since k ≤ r − 3 and τ � 1/r , comparing these two bounds on e(Ai ) gives m � si whenever
si > 0. So we may pick a matching Mi with si edges in Ai , all of whose vertices are non-useless
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(since no vertices in Ai are bad). Now for each i in turn, we will remove the i-exceptional vertices
in Ar−1 using this matching. For each such vertex x ∈ Ar−1, pick an edge yz ∈ Mi . Swap x with
y; we now no longer consider x to be exceptional. Then greedily find a copy of K −

r which meets
Ar−1 precisely in y, which meets Ai precisely in z and which contains two vertices in some A j
with j 6= i, r −1 (such a j exists since r ≥ 4), and one vertex in each other A j . All these vertices
will be chosen to be non-useless, and all (except y and z) will avoid each M j . Remove this copy
of K −

r . Then also greedily take out r − 3 further disjoint copies of K −
r , avoiding the M j and all

useless vertices, in such a way that altogether they respect the proportions of the Ai . Note that
we can find these copies greedily since the (q + 1)-partite graph induced by the Ai is almost
complete. We continue doing this until no exceptional vertices are left in Ar−1. The fact that Mi
has si edges ensures that we will always have an edge left in the appropriate matching for each
exceptional vertex in Ar−1.

Now for all other exceptional vertices, proceed using the argument for the case when q ≤

r − 3. In this way we will remove all the exceptional vertices.
So in both cases we will obtain sets A′

1, . . . , A′

q+1 not containing any exceptional vertices.
We now want to remove any remaining useless vertices. Before dealing with the exceptional
vertices, each useless but non-exceptional vertex in Ai had at least τ 1/3

|A j |/2 neighbours in A j
for each j 6= i . Also, we had at most τ 2/3n useless vertices, and therefore also at most this many
exceptional vertices. So we have taken out at most r(r − 2)τ 2/3n vertices. Thus each remaining
vertex x ∈ A′

i still has at least τ 1/3
|A′

j |/3 neighbours in A′

j for each j 6= i , which is much larger
than the number of j-useless vertices.

Ideally, for a useless vertex x ∈ A′

i we would like to pick neighbours in each other class
greedily so that together these vertices form a copy of K −

r with, say, two vertices in A′

1, r −q −1
vertices in A′

q+1 and one vertex in each other A′

j . The problem is that the neighbours of x may
avoid a substantial proportion of A′

q+1, and so in particular may not include any of the copies of
Kr−q−1 which we know are contained in Aq+1 (and therefore in A′

q+1).
So instead, we proceed as follows. We first deal with all the vertices which have too few

neighbours in A′

q+1. Let U be the set of vertices in A′

1 ∪ · · · ∪ A′
q which originally had at most

(1 − τ 1/4)|Aq+1| neighbours in Aq+1. In particular, all these vertices are useless. Note that a
vertex x ∈ U ∩ A′

i (where i ≤ q) still has at least τ 1/3
|A′

i |/3 neighbours in A′

i . For each such
vertex x in turn we proceed as follows. We first move x into A′

q+1. Then we will greedily find
a copy of K −

r which avoids x and meets each A′

j with j ≤ q in precisely one vertex. Note that
similarly as in (4) one can show that

δ(G[A′

q+1]) ≥

(
1 −

1
r − q − 2

+
c(r)

2

)
|A′

q+1|. (5)

So we may apply the Erdős–Stone theorem to find the necessary copy of K −

r−q in A′

q+1 avoiding
x as well as all the (q + 1)-useless vertices. We can extend it to the desired copy of K −

r , also
avoiding all the useless vertices. Remove this copy of K −

r . In effect, we have removed two
vertices from A′

i (one vertex in the copy of K −
r and x), r − q − 1 vertices from A′

q+1 and one
vertex from each other A′

j . We can also find r − 3 further disjoint copies of K −
r in such a way

that altogether these copies respect the proportions of the A′

i . Remove these copies. Repeating
this for each vertex x ∈ U , in total we move or remove at most τ 1/2n vertices. We denote by A′′

i
the sets thus obtained from the A′

i .



2152 O. Cooley et al. / European Journal of Combinatorics 28 (2007) 2143–2155

The effect of moving the vertices of U and taking out these copies of K −
r is that all vertices

(except those in A′′

q+1) are joined to almost all of A′′

q+1. The vertices in U may now be (q + 1)-
useless, but are certainly non-exceptional.

Now consider any useless vertex x ∈ A′′

i where i 6= q + 1. Let A′′

j be the vertex set in which
x has the lowest number of neighbours, not including j = i, q + 1. (Note that such a j exists
since if q = 1, a useless vertex x ∈ A1 would have been in U , so we would already have dealt
with it.) Pick non-useless neighbours y and z of x in A′′

j . (Such neighbours exist since x was
not j-exceptional.) Recall that each of x , y and z is joined to almost all of A′′

q+1. Since A′′

q+1 is
almost as large as Aq+1 it follows that many of the copies of Kr−q−1 chosen after (4) lie in the
common neighbourhood of x , y and z, and so form a copy of K −

r−q+2 together with x , y and z.
Pick such a copy. Now note that the choice of j implies that x is joined to at least |A′′

` |/3 vertices
in A′′

` for each ` 6= i, j, q + 1. So we can greedily extend this copy of K −

r−q+2 to a copy of K −
r

in G by picking one non-useless vertex in every other A′′

` . We then greedily find r − 3 further
disjoint copies of K −

r avoiding all the useless vertices so that together with the copy just found,
these copies of K −

r respect the proportions of the A′′

i . Remove all these copies of K −
r .

For a (q + 1)-useless vertex x , we perform a similar process, except that x is already in A′′

q+1,
so we find non-useless neighbours y and z of x in A′′

j and find a copy of Kr−q−1 in A′′

q+1 which
contains x and lies in the common neighbourhood of y and z. We can do this since (5) implies
that

δ(G[A′′

q+1]) ≥

(
1 −

1
r − q − 2

+
c(r)

3

)
|A′′

q+1|.

(Note that in particular this bound applies to the degree of x in A′′

q+1.) So we can successively
pick common non-useless neighbours of x , y and z in A′′

q+1 to construct the necessary Kr−q−1

containing x . Together with y and z this forms a copy of K −

r−q+1 which we extend suitably to
a copy of K −

r . As before we then find further disjoint copies of K −
r such that together all these

copies respect the proportions of the A′′

i . We can repeat this process until no useless vertices are
left. The fact that there are not too many useless vertices will ensure that all our calculations
remain valid.

Finally, if k > 0, we remove k further disjoint copies of K −
r to ensure that the sets

A∗

1, . . . , A∗

q+1 thus obtained from the A′′

i are (q, n∗)-canonical where n∗
:= |A∗

1 ∪ · · · ∪ A∗

q+1|.
This can be done because of our modification of the Ai at the beginning of the proof. Since the
A∗

i contain neither exceptional nor useless vertices and since we have not removed too many
vertices, it is easy to check that the A∗

i satisfy all the conditions of the lemma. �

5. Proof of Theorem 2

Recall that B∗
= B∗(K −

r ) denotes the bottle graph of K −
r . Fix constants 0 < τ1 � τ2 �

· · · � τr−1 � 1/r . Let G be the graph given in Theorem 2. Let q ≤ r − 2 be maximal such
that the conditions of Lemma 7 are satisfied with τ := τq . As already observed in Section 3,
by Theorem 6 we may assume that q ≥ 1. To prove Theorem 2, we apply first Lemma 7 with
this choice of q to obtain a subgraph G∗ of G and a (q, |G∗

|)-canonical partition A∗

1, . . . , A∗

q+1
of V (G∗). Our definition of q will ensure that if q 6= r − 3 then the graph induced by A∗

q+1 does
not look like one of the extremal graphs and so we can apply Theorem 6 to it in order to find a
perfect B1-packing, where B1 is the spanning subgraph of B∗

1 defined below. (Recall that B∗

1 is
the (r − q − 1)-partite subgraph of B∗ obtained by deleting q of the large vertex classes.) In the
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case when q = r − 3 the graph G∗
[A∗

q+1] might violate condition (ii) of Theorem 6. So in this
case we will apply Theorem 6 to the “almost-components” of G∗

[A∗

q+1] instead.
Recall that A∗

1, . . . , A∗
q all have the same size, which is a multiple of r − 1 (the size of a large

class of the bottle graph B∗). The size of A∗

q+1 is a multiple of |B∗

1 |. Our aim is to find a perfect
B1-packing in G∗

[A∗

q+1], where B1 is the graph consisting of q vertex-disjoint copies of Kr−q−1

together with r −q −2 vertex-disjoint copies of K −

r−q . We think of these copies as being arranged
into an (r − q − 1)-partite graph with one vertex set of size r − 2 and r − q − 2 vertex sets of
size r − 1. Thus B1 ⊆ B∗

1 and the vertex classes of B1 have the same sizes as those of B∗

1 . This
B1-packing in G∗

[A∗

q+1] will then be extended to a perfect K −
r -packing in G∗.

Lemma 8. We can take out from G∗ at most τ 1/3n∗ disjoint copies of K −
r to obtain subsets

A�

1, . . . , A�

q+1 of A∗

1, . . . , A∗

q+1 and a subgraph G� of G∗ such that the sets A�

1, . . . , A�

q+1 are
(q, |G�

|)-canonical and such that G�
[A�

q+1] contains a perfect B1-packing.

Proof. Note that in the case when q = r − 2 the graph B1 just consists of r − 2 isolated vertices,
and the existence of a perfect B1-packing is trivial since r − 2 divides |A∗

r−1|. In the case when
q ≤ r − 3 the proof of Lemma 8 will invoke the non-extremal result, Theorem 6, with τq+1
playing the role of τ0 there. It is for this reason that we will need the term −θn in the minimum
degree condition in Theorem 6. Finally, note that hcf(B1) = 1 (even in the case when B1 is
bipartite, i.e. when q = r − 3). Let s := r − q − 1 ≥ 2. Thus B1 is an s-partite graph. Observe
that χcr (B1) = χcr (B∗

1 ) =
s(r−1)−1

r−1 . Using (i) and (ii) of Lemma 7, similarly as in (2) and the
first inequality in (3) one can show that

δ(G[A∗

q+1]) ≥

(
1 −

1
χcr (B1)

− τ
1/4
q

)
|A∗

q+1|

=

(
(s − 1)(r − 1) − 1

s(r − 1) − 1
− τ

1/4
q

)
|A∗

q+1|. (6)

So the minimum degree condition of Theorem 6 is satisfied with θ := τ
1/4
q � τq+1. Our choice

of q implies that G∗
[A∗

q+1] satisfies condition (i) of Theorem 6 (with τ0 := τq+1). Thus in the
case when s > 2 we can apply Theorem 6 to find a perfect B1-packing in G∗

[A∗

q+1].
So we only need to consider the case when s = 2. In this case B1 is the bipartite

graph consisting of r − 3 disjoint edges and one path of length 2, and we are done if
condition (ii) of Theorem 6 holds. So suppose not and we do have some set C1 ⊆ A∗

q+1
with d(C1, A∗

q+1 \ C1) ≤ τq+1. Define C2 := A∗

q+1 \ C1. Then there is a vertex x ∈ C1

which has at most τq+1|C2| ≤ τq+1|A∗

q+1| neighbours in C2. Together with (6) this shows that
|C1| > δ(G∗

[A∗

q+1]) − τq+1|A∗

q+1| ≥ |A∗

q+1|/3. Similarly, |C2| > |A∗

q+1|/3.
We now aim to show that by moving a few vertices, we can achieve that each vertex in C1

has few neighbours in C2 and vice versa. (This in turn will imply that the graphs induced by
both C1 and C2 have large minimum degree.) Call a vertex x ∈ Ci in useless if it has at most
|Ci |/3 neighbours in Ci . By (6) every such x has at least |C j |/3 neighbours in the other class
C j . Furthermore, the low density between C1 and C2 shows that there are at most τ

3/4
q+1|A

∗

q+1|

useless vertices. We move each useless vertex into the other class and still denote the classes
thus obtained by C1 and C2. Then d(C1, C2) ≤ τ

2/3
q+1. Now call a vertex x in either class bad

if it has at least a τ
1/6
q+1-fraction of the vertices in the other class as neighbours. Clearly there

are at most τ
1/2
q+1|A

∗

q+1| bad vertices. For each bad vertex x ∈ Ci in turn we greedily choose a
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copy of B1 in Ci containing x such that these copies are disjoint for distinct bad vertices. (Use
that δ(G∗

[Ci ]) ≥ |Ci |/4 for i = 1, 2 and the fact that B1 consists only of edges and a path
of length 2 to see that such copies can be found.) By removing these copies of B1, we end up
with two sets C ′

1 and C ′

2 which do not contain bad vertices. So each vertex in C ′

1 has at most
2τ

1/6
q+1|C

′

2| neighbours in C ′

2 and vice versa. Since |C ′

i | ≥ |A∗

q+1|/4 for i = 1, 2 (and thus also
|C ′

i | ≤ 3|A∗

q+1|/4 for i = 1, 2) this in turn implies that

δ(G∗
[C ′

i ])
(6)
≥

(
1 −

1
χcr (B1)

− τ
1/7
q+1

)
4|C ′

i |

3
>

(
1 −

1
χcr (B1)

)
|C ′

i |. (7)

We now aim to take out a few further copies of K −
r from G∗ to ensure that both |C ′

1| and
|C ′

2| are divisible by |B1|. As observed at the beginning of this section, |A∗

q+1| is divisible by
|B1|. Thus |C ′

1| + |C ′

2| is also divisible by |B1|. Assume first that |C ′

1| = m|B1| − 1 for some
m ∈ N. We aim to remove 2(r − 2) disjoint copies of K −

r from G∗ in such a way that we remove
2(r − 1) vertices from every A∗

i with i ≤ r − 3, (r − 1) + (r − 2) − 1 vertices from C ′

1 and
(r − 1) + (r − 2) + 1 vertices from C ′

2. Then the sizes of the remaining subsets of C ′

1 and C ′

2
will be divisible by |B1|. Moreover, since the A∗

i were (q, |G∗
|)-canonical, and since altogether

we remove 2((r − 1) + (r − 2)) vertices from A∗

q+1, the remaining subsets will still induce a
canonical partition of the remaining subgraph of G∗.

The way we remove the above copies of K −
r is as follows: Greedily find r − 2 disjoint copies

of K −
r with two vertices in C ′

1, two vertices in A∗

i and one vertex in each A∗

j with 1 ≤ j ≤ r − 3
and j 6= i . For each of these copies of K −

r the index i will be different except that i = 1 will be
chosen twice. Also find r − 4 disjoint copies of K −

r with two vertices in C ′

2, two vertices in A∗

i
and one vertex in each A∗

j with 1 ≤ j ≤ r − 3 and j 6= i . The choices of i will be between 2 and
r − 3, and no i will be chosen twice. Finally, find two copies of K −

r with three vertices in C ′

2 and
one in each A∗

i for 1 ≤ i ≤ r − 3.
In the general case (i.e. when |C ′

i | ≡ t mod |B1|), we simply repeat this procedure t times to
even out the residues modulo |B1| between |C ′

1| and |C ′

2|. We denote the remaining subsets by
A�

i and C�

i and the remaining subgraph by G�. We only need to perform the above procedure at
most |B1| − 1 times, so we are taking out a bounded number of copies of K −

r , which will not
affect any of the vertex degrees significantly. Thus each G�

[C�

i ] satisfies the minimum degree
condition in Theorem 6. Indeed, the first inequality in (7) shows that

δ(G�
[C�

i ]) ≥

(
1 −

1
χcr (B1)

− τ
1/8
q+1

)
4|C�

i |

3
≥

(
2
5

− τ
1/8
q+1

)
4|C�

i |

3
≥

51
100

|C�

i |. (8)

This bound on the minimum degree also shows that each C�

i cannot contain an almost
independent set of size |C�

i |/2, so condition (i) of Theorem 6 is satisfied with room to spare.
To see that condition (ii) also holds, observe that if C�

i is partitioned into S1 and S2, where
0 < |S1| ≤ |C�

i |/2 ≤ |S2|, then the neighbours of any vertex in S1 cover a significant proportion
(at least 1/50) of S2, and so d(S1, S2) ≥ 1/50. So condition (ii) is satisfied too. Thus we can apply
Theorem 6 to each of the subgraphs of G� induced by C�

1 and C�

2 to find perfect B1-packings
in G�

[C�

1 ] and G�
[C�

2 ]. Adding back into A�

q+1 the vertices in the copies of B1 which were
removed when dealing with the bad vertices (and letting G� denote the subgraph of G induced
by the modified A�

i ), we still have a perfect B1-packing in G�
[A�

q+1], and G − G� consists of
those copies of K −

r which we removed. Thus G� and the A�

i are as required in the lemma. �
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Our aim now is to extend the perfect B1-packing in G�
[A�

q+1] to a perfect K −
r -packing in

G�. To do this, we define a (q + 1)-partite auxiliary graph J , whose vertices are the vertices in
A�

i for all 1 ≤ i ≤ q together with all the copies of B1 in the perfect B1-packing of G�
[A�

q+1].
There will be an edge between vertices from the A�

i ’s whenever there was one in G, and a vertex
x ∈ A�

i for 1 ≤ i ≤ q will be joined to a copy of B1 whenever x was joined to all the vertices of
this copy in G.

Let Hq,r−1 denote the complete (q +1)-partite graph with q classes of size r −1 and one class
of size 1. We wish to find a perfect Hq,r−1-packing in J . It is easy to see that this then yields a
perfect K −

r -packing in G� and thus, together with all the copies of K −
r chosen earlier, a perfect

K −
r -packing in G.
The existence of such a perfect Hq,r−1-packing follows immediately from Proposition 5. To

see that we can apply this proposition, note that Lemma 7(iii) implies that in G∗ each vertex is
adjacent to almost all vertices in the other vertex classes and this remains true in G� since we only
deleted a small proportion of the vertices after applying Lemma 7. It follows immediately that
every vertex in J is adjacent to almost all vertices in the other vertex classes of J . Note also that
the vertex classes of J have the correct sizes since the sets A�

1, . . . , A�

q+1 are (q, |G�
|)-canonical.

This completes the proof of Theorem 2.
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