2,385 research outputs found

    Hamilton decompositions of regular expanders: applications

    Get PDF
    In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This verified a conjecture of Kelly from 1968. In this paper, we derive a number of further consequences of our result on robust outexpanders, the main ones are the following: (i) an undirected analogue of our result on robust outexpanders; (ii) best possible bounds on the size of an optimal packing of edge-disjoint Hamilton cycles in a graph of minimum degree d for a large range of values for d. (iii) a similar result for digraphs of given minimum semidegree; (iv) an approximate version of a conjecture of Nash-Williams on Hamilton decompositions of dense regular graphs; (v) the observation that dense quasi-random graphs are robust outexpanders; (vi) a verification of the `very dense' case of a conjecture of Frieze and Krivelevich on packing edge-disjoint Hamilton cycles in random graphs; (vii) a proof of a conjecture of Erdos on the size of an optimal packing of edge-disjoint Hamilton cycles in a random tournament.Comment: final version, to appear in J. Combinatorial Theory

    Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

    Get PDF
    A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain numerous further results, e.g. as a special case we confirm a conjecture of Erdos on packing Hamilton cycles in random tournaments. As corollaries to the main result, we also obtain several results on packing Hamilton cycles in undirected graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We also apply our result to solve a problem on the domination ratio of the Asymmetric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as well as Alon, Gutin and Krivelevich.Comment: new version includes a standalone version of the `robust decomposition lemma' for application in subsequent paper

    Hamilton cycles, minimum degree and bipartite holes

    Full text link
    We present a tight extremal threshold for the existence of Hamilton cycles in graphs with large minimum degree and without a large ``bipartite hole`` (two disjoint sets of vertices with no edges between them). This result extends Dirac's classical theorem, and is related to a theorem of Chv\'atal and Erd\H{o}s. In detail, an (s,t)(s, t)-bipartite-hole in a graph GG consists of two disjoint sets of vertices SS and TT with ∣S∣=s|S|= s and ∣T∣=t|T|=t such that there are no edges between SS and TT; and α~(G)\widetilde{\alpha}(G) is the maximum integer rr such that GG contains an (s,t)(s, t)-bipartite-hole for every pair of non-negative integers ss and tt with s+t=rs + t = r. Our central theorem is that a graph GG with at least 33 vertices is Hamiltonian if its minimum degree is at least α~(G)\widetilde{\alpha}(G). From the proof we obtain a polynomial time algorithm that either finds a Hamilton cycle or a large bipartite hole. The theorem also yields a condition for the existence of kk edge-disjoint Hamilton cycles. We see that for dense random graphs G(n,p)G(n,p), the probability of failing to contain many edge-disjoint Hamilton cycles is (1−p)(1+o(1))n(1 - p)^{(1 + o(1))n}. Finally, we discuss the complexity of calculating and approximating α~(G)\widetilde{\alpha}(G)

    On covering expander graphs by Hamilton cycles

    Full text link
    The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree Δ\Delta satisfies some basic expansion properties and contains a family of (1−o(1))Δ/2(1-o(1))\Delta/2 edge disjoint Hamilton cycles, then there also exists a covering of its edges by (1+o(1))Δ/2(1+o(1))\Delta/2 Hamilton cycles. This implies that for every α>0\alpha >0 and every p≥nα−1p \geq n^{\alpha-1} there exists a covering of all edges of G(n,p)G(n,p) by (1+o(1))np/2(1+o(1))np/2 Hamilton cycles asymptotically almost surely, which is nearly optimal.Comment: 19 pages. arXiv admin note: some text overlap with arXiv:some math/061275

    Robust Hamiltonicity in families of Dirac graphs

    Full text link
    A graph is called Dirac if its minimum degree is at least half of the number of vertices in it. Joos and Kim showed that every collection G={G1,…,Gn}\mathbb{G}=\{G_1,\ldots,G_n\} of Dirac graphs on the same vertex set VV of size nn contains a Hamilton cycle transversal, i.e., a Hamilton cycle HH on VV with a bijection ϕ:E(H)→[n]\phi:E(H)\rightarrow [n] such that e∈Gϕ(e)e\in G_{\phi(e)} for every e∈E(H)e\in E(H). In this paper, we determine up to a multiplicative constant, the threshold for the existence of a Hamilton cycle transversal in a collection of random subgraphs of Dirac graphs in various settings. Our proofs rely on constructing a spread measure on the set of Hamilton cycle transversals of a family of Dirac graphs. As a corollary, we obtain that every collection of nn Dirac graphs on nn vertices contains at least (cn)2n(cn)^{2n} different Hamilton cycle transversals (H,ϕ)(H,\phi) for some absolute constant c>0c>0. This is optimal up to the constant cc. Finally, we show that if nn is sufficiently large, then every such collection spans n/2n/2 pairwise edge-disjoint Hamilton cycle transversals, and this is best possible. These statements generalize classical counting results of Hamilton cycles in a single Dirac graph
    • …
    corecore