431 research outputs found

    Proof of the Goldberg-Seymour Conjecture on Edge-Colorings of Multigraphs

    Full text link
    Given a multigraph G=(V,E)G=(V,E), the {\em edge-coloring problem} (ECP) is to color the edges of GG with the minimum number of colors so that no two adjacent edges have the same color. This problem can be naturally formulated as an integer program, and its linear programming relaxation is called the {\em fractional edge-coloring problem} (FECP). In the literature, the optimal value of ECP (resp. FECP) is called the {\em chromatic index} (resp. {\em fractional chromatic index}) of GG, denoted by χ(G)\chi'(G) (resp. χ(G)\chi^*(G)). Let Δ(G)\Delta(G) be the maximum degree of GG and let Γ(G)=max{2E(U)U1:UV,U3andodd},\Gamma(G)=\max \Big\{\frac{2|E(U)|}{|U|-1}:\,\, U \subseteq V, \,\, |U|\ge 3 \hskip 2mm {\rm and \hskip 2mm odd} \Big\}, where E(U)E(U) is the set of all edges of GG with both ends in UU. Clearly, max{Δ(G),Γ(G)}\max\{\Delta(G), \, \lceil \Gamma(G) \rceil \} is a lower bound for χ(G)\chi'(G). As shown by Seymour, χ(G)=max{Δ(G),Γ(G)}\chi^*(G)=\max\{\Delta(G), \, \Gamma(G)\}. In the 1970s Goldberg and Seymour independently conjectured that χ(G)max{Δ(G)+1,Γ(G)}\chi'(G) \le \max\{\Delta(G)+1, \, \lceil \Gamma(G) \rceil\}. Over the past four decades this conjecture, a cornerstone in modern edge-coloring, has been a subject of extensive research, and has stimulated a significant body of work. In this paper we present a proof of this conjecture. Our result implies that, first, there are only two possible values for χ(G)\chi'(G), so an analogue to Vizing's theorem on edge-colorings of simple graphs, a fundamental result in graph theory, holds for multigraphs; second, although it is NPNP-hard in general to determine χ(G)\chi'(G), we can approximate it within one of its true value, and find it exactly in polynomial time when Γ(G)>Δ(G)\Gamma(G)>\Delta(G); third, every multigraph GG satisfies χ(G)χ(G)1\chi'(G)-\chi^*(G) \le 1, so FECP has a fascinating integer rounding property

    On the Number of Synchronizing Colorings of Digraphs

    Full text link
    We deal with kk-out-regular directed multigraphs with loops (called simply \emph{digraphs}). The edges of such a digraph can be colored by elements of some fixed kk-element set in such a way that outgoing edges of every vertex have different colors. Such a coloring corresponds naturally to an automaton. The road coloring theorem states that every primitive digraph has a synchronizing coloring. In the present paper we study how many synchronizing colorings can exist for a digraph with nn vertices. We performed an extensive experimental investigation of digraphs with small number of vertices. This was done by using our dedicated algorithm exhaustively enumerating all small digraphs. We also present a series of digraphs whose fraction of synchronizing colorings is equal to 11/kd1-1/k^d, for every d1d \ge 1 and the number of vertices large enough. On the basis of our results we state several conjectures and open problems. In particular, we conjecture that 11/k1-1/k is the smallest possible fraction of synchronizing colorings, except for a single exceptional example on 6 vertices for k=2k=2.Comment: CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_1

    Computational Complexity of Covering Multigraphs with Semi-Edges: Small Cases

    Get PDF
    We initiate the study of computational complexity of graph coverings, aka locally bijective graph homomorphisms, for graphs with semi-edges. The notion of graph covering is a discretization of coverings between surfaces or topological spaces, a notion well known and deeply studied in classical topology. Graph covers have found applications in discrete mathematics for constructing highly symmetric graphs, and in computer science in the theory of local computations. In 1991, Abello et al. asked for a classification of the computational complexity of deciding if an input graph covers a fixed target graph, in the ordinary setting (of graphs with only edges). Although many general results are known, the full classification is still open. In spite of that, we propose to study the more general case of covering graphs composed of normal edges (including multiedges and loops) and so-called semi-edges. Semi-edges are becoming increasingly popular in modern topological graph theory, as well as in mathematical physics. They also naturally occur in the local computation setting, since they are lifted to matchings in the covering graph. We show that the presence of semi-edges makes the covering problem considerably harder; e.g., it is no longer sufficient to specify the vertex mapping induced by the covering, but one necessarily has to deal with the edge mapping as well. We show some solvable cases and, in particular, completely characterize the complexity of the already very nontrivial problem of covering one- and two-vertex (multi)graphs with semi-edges. Our NP-hardness results are proven for simple input graphs, and in the case of regular two-vertex target graphs, even for bipartite ones. We remark that our new characterization results also strengthen previously known results for covering graphs without semi-edges, and they in turn apply to an infinite class of simple target graphs with at most two vertices of degree more than two. Some of the results are moreover proven in a more general setting (e.g., finding k-tuples of pairwise disjoint perfect matchings in regular graphs, or finding equitable partitions of regular bipartite graphs)

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    On edge-group choosability of graphs

    Full text link
    In this paper, we study the concept of edge-group choosability of graphs. We say that G is edge k-group choosable if its line graph is k-group choosable. An edge-group choosability version of Vizing conjecture is given. The evidence of our claim are graphs with maximum degree less than 4, planar graphs with maximum degree at least 11, planar graphs without small cycles, outerplanar graphs and near-outerplanar graphs
    corecore