171,799 research outputs found

    Monocular Vision as a Range Sensor

    Get PDF
    One of the most important abilities for a mobile robot is detecting obstacles in order to avoid collisions. Building a map of these obstacles is the next logical step. Most robots to date have used sensors such as passive or active infrared, sonar or laser range finders to locate obstacles in their path. In contrast, this work uses a single colour camera as the only sensor, and consequently the robot must obtain range information from the camera images. We propose simple methods for determining the range to the nearest obstacle in any direction in the robot’s field of view, referred to as the Radial Obstacle Profile. The ROP can then be used to determine the amount of rotation between two successive images, which is important for constructing a 360º view of the surrounding environment as part of map construction

    Visual Quality Enhancement in Optoacoustic Tomography using Active Contour Segmentation Priors

    Full text link
    Segmentation of biomedical images is essential for studying and characterizing anatomical structures, detection and evaluation of pathological tissues. Segmentation has been further shown to enhance the reconstruction performance in many tomographic imaging modalities by accounting for heterogeneities of the excitation field and tissue properties in the imaged region. This is particularly relevant in optoacoustic tomography, where discontinuities in the optical and acoustic tissue properties, if not properly accounted for, may result in deterioration of the imaging performance. Efficient segmentation of optoacoustic images is often hampered by the relatively low intrinsic contrast of large anatomical structures, which is further impaired by the limited angular coverage of some commonly employed tomographic imaging configurations. Herein, we analyze the performance of active contour models for boundary segmentation in cross-sectional optoacoustic tomography. The segmented mask is employed to construct a two compartment model for the acoustic and optical parameters of the imaged tissues, which is subsequently used to improve accuracy of the image reconstruction routines. The performance of the suggested segmentation and modeling approach are showcased in tissue-mimicking phantoms and small animal imaging experiments.Comment: Accepted for publication in IEEE Transactions on Medical Imagin

    Submillimeter Studies of Prestellar Cores and Protostars: Probing the Initial Conditions for Protostellar Collapse

    Full text link
    Improving our understanding of the initial conditions and earliest stages of protostellar collapse is crucial to gain insight into the origin of stellar masses, multiple systems, and protoplanetary disks. Observationally, there are two complementary approaches to this problem: (1) studying the structure and kinematics of prestellar cores observed prior to protostar formation, and (2) studying the structure of young (e.g. Class 0) accreting protostars observed soon after point mass formation. We discuss recent advances made in this area thanks to (sub)millimeter mapping observations with large single-dish telescopes and interferometers. In particular, we argue that the beginning of protostellar collapse is much more violent in cluster-forming clouds than in regions of distributed star formation. Major breakthroughs are expected in this field from future large submillimeter instruments such as Herschel and ALMA.Comment: 12 pages, 9 figures, to appear in the proceedings of the conference "Chemistry as a Diagnostic of Star Formation" (C.L. Curry & M. Fich eds.

    Topological Valley Currents in Gapped Dirac Materials

    Get PDF
    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent or when they are localized due to edge roughness. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. Dissipationless currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The under-gap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.Comment: 5pgs 3fg
    • …
    corecore