346 research outputs found

    Edge-Graph Diameter Bounds for Convex Polytopes with Few Facets

    Full text link
    We show that the edge graph of a 6-dimensional polytope with 12 facets has diameter at most 6, thus verifying the d-step conjecture of Klee and Walkup in the case of d=6. This implies that for all pairs (d,n) with n-d \leq 6 the diameter of the edge graph of a d-polytope with n facets is bounded by 6, which proves the Hirsch conjecture for all n-d \leq 6. We show this result by showing this bound for a more general structure -- so-called matroid polytopes -- by reduction to a small number of satisfiability problems.Comment: 9 pages; update shortcut constraint discussio

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than ndn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    Topological Prismatoids and Small Simplicial Spheres of Large Diameter

    Full text link
    We introduce topological prismatoids, a combinatorial abstraction of the (geometric) prismatoids recently introduced by the second author to construct counter-examples to the Hirsch conjecture. We show that the `strong dd-step Theorem' that allows to construct such large-diameter polytopes from `non-dd-step' prismatoids still works at this combinatorial level. Then, using metaheuristic methods on the flip graph, we construct four combinatorially different non-dd-step 44-dimensional topological prismatoids with 1414 vertices. This implies the existence of 88-dimensional spheres with 1818 vertices whose combinatorial diameter exceeds the Hirsch bound. These examples are smaller that the previously known examples by Mani and Walkup in 1980 (2424 vertices, dimension 1111). Our non-Hirsch spheres are shellable but we do not know whether they are realizable as polytopes.Comment: 20 pages. Changes from v1 and v2: Reduced the part on shellability and general improvement to accesibilit

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Graphs of Transportation Polytopes

    Get PDF
    This paper discusses properties of the graphs of 2-way and 3-way transportation polytopes, in particular, their possible numbers of vertices and their diameters. Our main results include a quadratic bound on the diameter of axial 3-way transportation polytopes and a catalogue of non-degenerate transportation polytopes of small sizes. The catalogue disproves five conjectures about these polyhedra stated in the monograph by Yemelichev et al. (1984). It also allowed us to discover some new results. For example, we prove that the number of vertices of an m×nm\times n transportation polytope is a multiple of the greatest common divisor of mm and nn.Comment: 29 pages, 7 figures. Final version. Improvements to the exposition of several lemmas and the upper bound in Theorem 1.1 is improved by a factor of tw

    A counterexample to the Hirsch conjecture

    Full text link
    The Hirsch Conjecture (1957) stated that the graph of a dd-dimensional polytope with nn facets cannot have (combinatorial) diameter greater than ndn-d. That is, that any two vertices of the polytope can be connected by a path of at most ndn-d edges. This paper presents the first counterexample to the conjecture. Our polytope has dimension 43 and 86 facets. It is obtained from a 5-dimensional polytope with 48 facets which violates a certain generalization of the dd-step conjecture of Klee and Walkup.Comment: 28 pages, 10 Figures: Changes from v2: Minor edits suggested by referees. This version has been accepted in the Annals of Mathematic

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure
    corecore