2,895 research outputs found

    Algorithms and Bounds for Very Strong Rainbow Coloring

    Full text link
    A well-studied coloring problem is to assign colors to the edges of a graph GG so that, for every pair of vertices, all edges of at least one shortest path between them receive different colors. The minimum number of colors necessary in such a coloring is the strong rainbow connection number (\src(G)) of the graph. When proving upper bounds on \src(G), it is natural to prove that a coloring exists where, for \emph{every} shortest path between every pair of vertices in the graph, all edges of the path receive different colors. Therefore, we introduce and formally define this more restricted edge coloring number, which we call \emph{very strong rainbow connection number} (\vsrc(G)). In this paper, we give upper bounds on \vsrc(G) for several graph classes, some of which are tight. These immediately imply new upper bounds on \src(G) for these classes, showing that the study of \vsrc(G) enables meaningful progress on bounding \src(G). Then we study the complexity of the problem to compute \vsrc(G), particularly for graphs of bounded treewidth, and show this is an interesting problem in its own right. We prove that \vsrc(G) can be computed in polynomial time on cactus graphs; in contrast, this question is still open for \src(G). We also observe that deciding whether \vsrc(G) = k is fixed-parameter tractable in kk and the treewidth of GG. Finally, on general graphs, we prove that there is no polynomial-time algorithm to decide whether \vsrc(G) \leq 3 nor to approximate \vsrc(G) within a factor n1−εn^{1-\varepsilon}, unless P==NP

    Vertex Ramsey problems in the hypercube

    Get PDF
    If we 2-color the vertices of a large hypercube what monochromatic substructures are we guaranteed to find? Call a set S of vertices from Q_d, the d-dimensional hypercube, Ramsey if any 2-coloring of the vertices of Q_n, for n sufficiently large, contains a monochromatic copy of S. Ramsey's theorem tells us that for any r \geq 1 every 2-coloring of a sufficiently large r-uniform hypergraph will contain a large monochromatic clique (a complete subhypergraph): hence any set of vertices from Q_d that all have the same weight is Ramsey. A natural question to ask is: which sets S corresponding to unions of cliques of different weights from Q_d are Ramsey? The answer to this question depends on the number of cliques involved. In particular we determine which unions of 2 or 3 cliques are Ramsey and then show, using a probabilistic argument, that any non-trivial union of 39 or more cliques of different weights cannot be Ramsey. A key tool is a lemma which reduces questions concerning monochromatic configurations in the hypercube to questions about monochromatic translates of sets of integers.Comment: 26 pages, 3 figure

    On the choosability of claw-free perfect graphs

    Full text link
    It has been conjectured that for every claw-free graph GG the choice number of GG is equal to its chromatic number. We focus on the special case of this conjecture where GG is perfect. Claw-free perfect graphs can be decomposed via clique-cutset into two special classes called elementary graphs and peculiar graphs. Based on this decomposition we prove that the conjecture holds true for every claw-free perfect graph with maximum clique size at most 44
    • …
    corecore