926,517 research outputs found
Two Dimensional Edge Detection by Guided Mode Resonant Metasurface
In this letter, a new approach to perform edge detection is presented using
an all-dielectric CMOS-compatible metasurface. The design is based on
guided-mode resonance which provides a high quality factor resonance to make
the edge detection experimentally realizable. The proposed structure that is
easy to fabricate, can be exploited for detection of edges in two dimensions
due to its symmetry. Also, the trade-off between gain and resolution of edge
detection is discussed which can be adjusted by appropriate design parameters.
The proposed edge detector has also the potential to be used in ultrafast
analog computing and image processing
Delaunay triangulation based image enhancement for echocardiography images
A novel image enhancement approach for automatic echocardiography image processing is proposed. The main steps include undecimated wavelet based speckle noise reduction, edge detection, followed by a regional enhancement process that employs Delaunay triangulation based thresholding. The edge detection is performed using a fuzzy logic based center point detection and a subsequent radial search based fuzzy multiscale edge detection. The edges obtained are used as the vertices for Delaunay triangulation for enhancement purposes. This method enhances the heart wall region in the echo image. This technique is applied to both synthetic and real image sets that were obtained from a local hospital
Gabor Filter and Rough Clustering Based Edge Detection
This paper introduces an efficient edge detection method based on Gabor
filter and rough clustering. The input image is smoothed by Gabor function, and
the concept of rough clustering is used to focus on edge detection with soft
computational approach. Hysteresis thresholding is used to get the actual
output, i.e. edges of the input image. To show the effectiveness, the proposed
technique is compared with some other edge detection methods.Comment: Proc. IEEE Conf. #30853, International Conference on Human Computer
Interactions (ICHCI'13), Chennai, India, 23-24 Aug., 201
Using the discrete hadamard transform to detect moving objects in surveillance video
In this paper we present an approach to object detection in surveillance video based on detecting moving edges
using the Hadamard transform. The proposed method is characterized by robustness to illumination changes
and ghosting effects and provides high speed detection, making it particularly suitable for surveillance applications.
In addition to presenting an approach to moving edge detection using the Hadamard transform, we
introduce two measures to track edge history, Pixel Bit Mask Difference (PBMD) and History Update Value
(H UV ) that help reduce the false detections commonly experienced by approaches based on moving edges.
Experimental results show that the proposed algorithm overcomes the traditional drawbacks of frame differencing
and outperforms existing edge-based approaches in terms of both detection results and computational
complexity
Edge Detection: A Collection of Pixel based Approach for Colored Images
The existing traditional edge detection algorithms process a single pixel on
an image at a time, thereby calculating a value which shows the edge magnitude
of the pixel and the edge orientation. Most of these existing algorithms
convert the coloured images into gray scale before detection of edges. However,
this process leads to inaccurate precision of recognized edges, thus producing
false and broken edges in the image. This paper presents a profile modelling
scheme for collection of pixels based on the step and ramp edges, with a view
to reducing the false and broken edges present in the image. The collection of
pixel scheme generated is used with the Vector Order Statistics to reduce the
imprecision of recognized edges when converting from coloured to gray scale
images. The Pratt Figure of Merit (PFOM) is used as a quantitative comparison
between the existing traditional edge detection algorithm and the developed
algorithm as a means of validation. The PFOM value obtained for the developed
algorithm is 0.8480, which showed an improvement over the existing traditional
edge detection algorithms.Comment: 5 Page
A quantitative study of the orientation bias of some edge detector schemes
The evaluation of a particular set of edge detection schemes is described. The results obtained are compared with those obtained from an edge detection scheme using a texture oriented approach. The orientational bias of these schemes is emphasized. Improved qualitative observations are reported and a comparison of the evaluation method with another edge detection evaluation method is presented
- …
