12 research outputs found

    Edge Intersection Graphs of L-Shaped Paths in Grids

    Full text link
    In this paper we continue the study of the edge intersection graphs of one (or zero) bend paths on a rectangular grid. That is, the edge intersection graphs where each vertex is represented by one of the following shapes: \llcorner,\ulcorner, \urcorner, \lrcorner, and we consider zero bend paths (i.e., | and -) to be degenerate \llcorners. These graphs, called B1B_1-EPG graphs, were first introduced by Golumbic et al (2009). We consider the natural subclasses of B1B_1-EPG formed by the subsets of the four single bend shapes (i.e., {\llcorner}, {\llcorner,\ulcorner}, {\llcorner,\urcorner}, and {\llcorner,\ulcorner,\urcorner}) and we denote the classes by [\llcorner], [\llcorner,\ulcorner], [\llcorner,\urcorner], and [\llcorner,\ulcorner,\urcorner] respectively. Note: all other subsets are isomorphic to these up to 90 degree rotation. We show that testing for membership in each of these classes is NP-complete and observe the expected strict inclusions and incomparability (i.e., [\llcorner] \subsetneq [\llcorner,\ulcorner], [\llcorner,\urcorner] \subsetneq [\llcorner,\ulcorner,\urcorner] \subsetneq B1B_1-EPG; also, [\llcorner,\ulcorner] is incomparable with [\llcorner,\urcorner]). Additionally, we give characterizations and polytime recognition algorithms for special subclasses of Split \cap [\llcorner].Comment: 14 pages, to appear in DAM special issue for LAGOS'1

    The Complexity of Helly-B1B_{1} EPG Graph Recognition

    Full text link
    Golumbic, Lipshteyn, and Stern defined in 2009 the class of EPG graphs, the intersection graph class of edge paths on a grid. An EPG graph GG is a graph that admits a representation where its vertices correspond to paths in a grid QQ, such that two vertices of GG are adjacent if and only if their corresponding paths in QQ have a common edge. If the paths in the representation have at most kk bends, we say that it is a BkB_k-EPG representation. A collection CC of sets satisfies the Helly property when every sub-collection of CC that is pairwise intersecting has at least one common element. In this paper, we show that given a graph GG and an integer kk, the problem of determining whether GG admits a BkB_k-EPG representation whose edge-intersections of paths satisfy the Helly property, so-called Helly-BkB_k-EPG representation, is in NP, for every kk bounded by a polynomial function of V(G)|V(G)|. Moreover, we show that the problem of recognizing Helly-B1B_1-EPG graphs is NP-complete, and it remains NP-complete even when restricted to 2-apex and 3-degenerate graphs

    Proper circular arc graphs as intersection graphs of pathson a grid

    Get PDF
    In this paper we present a characterization, by an infinite family of minimal forbidden induced subgraphs, of proper circular arc graphs which are intersection graphs of paths on a grid, where each path has at most one bend (turn).Facultad de Ciencias Exacta

    K-SUN PERTENCE A B2-EPG-HELLY

    Get PDF
    In this article we explore the -EPG class and the Helly property. We present generic results on EPG representations and define terms that support the other results, in addition, we finish the research with an unpublished algorithm that builds a Helly -EPG representation of any k-sun graph.En este artículo exploramos la clase -EPG y la propiedad Helly. Presentamos resultados genéricos sobre las representaciones EPG y definimos términos que respaldan los otros resultados, además, finalizamos la investigación con un algoritmo original que construye una representación -EPG -Helly de cualquier grafo k-sun.Dans cet article, nous explorons la classe de graphes B_2-EPG et la propriété Helly. Nous présentons des résultats génériques sur les représentations EPG et définissons les termes qui supportent les autres résultats, en plus, nous présentons un algorithme sans précédent qui construit une représentation B_2-EPG-Helly de tout graphe k-sun.Neste artigo exploramos a classe de grafos -EPG e a propriedade Helly. Apresentamos resultados genéricos sobre representações EPG e definimos termos que suportam os demais resultados, além disso, apresentamos um algoritmo inédito que constrói uma representação -EPG-Helly de qualquer grafo k-sun

    Graphs of Edge-Intersecting Non-Splitting Paths in a Tree: Representations of Holes-Part II

    Full text link
    Given a tree and a set P of non-trivial simple paths on it, VPT(P) is the VPT graph (i.e. the vertex intersection graph) of the paths P, and EPT(P) is the EPT graph (i.e. the edge intersection graph) of P. These graphs have been extensively studied in the literature. Given two (edge) intersecting paths in a graph, their split vertices is the set of vertices having degree at least 3 in their union. A pair of (edge) intersecting paths is termed non-splitting if they do not have split vertices (namely if their union is a path). We define the graph ENPT(P) of edge intersecting non-splitting paths of a tree, termed the ENPT graph, as the graph having a vertex for each path in P, and an edge between every pair of vertices representing two paths that are both edge-intersecting and non-splitting. A graph G is an ENPT graph if there is a tree T and a set of paths P of T such that G=ENPT(P), and we say that is a representation of G. Our goal is to characterize the representation of chordless ENPT cycles (holes). To achieve this goal, we first assume that the EPT graph induced by the vertices of an ENPT hole is given. In [2] we introduce three assumptions (P1), (P2), (P3) defined on EPT, ENPT pairs of graphs. In the same study, we define two problems HamiltonianPairRec, P3-HamiltonianPairRec and characterize the representations of ENPT holes that satisfy (P1), (P2), (P3). In this work, we continue our work by relaxing these three assumptions one by one. We characterize the representations of ENPT holes satisfying (P3) by providing a polynomial-time algorithm to solve P3-HamiltonianPairRec. We also show that there does not exist a polynomial-time algorithm to solve HamiltonianPairRec, unless P=NP
    corecore