1 research outputs found

    Easy knapsacks and the complexity of energy allocation problems in the smart grid

    Get PDF
    Motivated by the growing interest in the smart grid and intelligent energy man- agement mechanisms we study two classes of domestic energy allocation problems. In the first case we work with a system that is tasked with scheduling the work on a number of appliances over a given time window. In the second one a collection of air conditioning appliances is used to control the temperature of a given domestic environment. Our frame- work for this case includes a simplified mechanism for modelling the heat exchange between the interior and the exterior of the given environment. We present various polynomial time algorithms and NP-hardness proofs. In particular the main result of the paper is a proof that although it is NP-hard to schedule the operation of a single air-conditioning (AC) unit, working at various temperature levels in a variable energy price regime, there is a polyno- mial time algorithm for controlling one such device working at a single temperature level, for houses with low thermal inertia. The algorithm analysis hinges on the properties of a polynomial time variant of the minimisation version of the knapsack problem which may be of independent interest
    corecore