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Abstract Motivated by the growing interest in the smart grid and intelligent energy man-
agement mechanisms we study two classes of domestic energy allocation problems. In the
first case we work with a system that is tasked with scheduling the work on a number of
appliances over a given time window. In the second one a collection of air conditioning
appliances is used to control the temperature of a given domestic environment. Our frame-
work for this case includes a simplified mechanism for modelling the heat exchange between
the interior and the exterior of the given environment. We present various polynomial time
algorithms and NP-hardness proofs. In particular the main result of the paper is a proof
that although it is NP-hard to schedule the operation of a single air-conditioning (AC) unit,
working at various temperature levels in a variable energy price regime, there is a polyno-
mial time algorithm for controlling one such device working at a single temperature level,
for houses with low thermal inertia. The algorithm analysis hinges on the properties of a
polynomial time variant of the minimisation version of the knapsack problem which may be
of independent interest.

Keywords Complexity · Optimization · Dynamic Programming · Algorithms

1 Introduction

The last ten years have seen the rapid development of the concept of smart grid, and signif-
icant work in the area of demand side load management [1,2]. With the increasingly large
range of (renewable) energy sources and tariffs, optimization in energy management is more
and more important. Koutsopoulos and Tassiulas [16] studied a type of optimization prob-
lem that is typical in this setting: an energy grid operator receives consumer requests with
different power requirements, durations, and deadlines. The objective of the operator is to
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devise a scheduling policy that minimizes the grid operational cost, seen as a convex func-
tion of the total load, over a given time horizon. The authors showed that if power demands
can be served preemptively then the allocation problem can be solved effectively, and if that
is not the case then the problem is NP-hard. Arikiez et al. [5] studied a Micro-Grid scenario
that generalizes Koutsopoulos et al’s model. A set of houses and a set of (renewable) energy
generators is given, fully connected to each other and connected to a national electricity
generator (NEG). Each house has a set of appliances which must be run a certain number of
times in specified time periods (must-use constraints). Additionally some appliances may be
used to control the temperature in (part of) the house (comfort constraints). The time horizon
is finite and subdivided in constant length time intervals. The collection of such intervals is
identified with an initial segment T = {1, 2, . . . , τ} of the set of positive natural numbers
(“0” often refers to a generic moment in time before the process of interest starts). The
system state is only allowed to change, instantaneously, between successive time intervals.
Hence we talk equivalently of “time (steps)” or “time intervals”. Some of the system set-
tings are described by finite sequences defined over T . For instance each generator r has an
available energy function: Pr(t) indicates how much electricity this generator can deliver
during the t-th time (interval) and we assume that this stays constant during such interval.
Also, a cost function γr,h(t) is defined for each house-generator pair (h, r) which indicates
the unit price at which house h can buy electricity from generator r at time t. The NEG is
represented by a cost function λh(t) which indicates the unit price at which any house can
buy electricity from NEG at time t. To avoid trivialities we assume that γr,h(t) < λh(t) for
all r, h, and t.

The main purpose of this paper is to study the complexity of classes of optimization
problems which can be defined within Arikiez’s et al. framework. For this reason, in the
rest of the paper, we restrict to systems formed by a single house, connected to NEG and
to a single generator (hence we drop indices h and r from our notations). In this setting P1
(equivalent to the non-preemptive case studied by Koutsopoulos and Tassiulas) is the prob-
lem of finding an appliance schedule compatible with a given set of must-use constraints
which minimizes the energy cost for the house, assuming no temperature controlling appli-
ance is present. After describing a few polynomial time cases, we show that P1 is actually
NP-hard in the strong sense even if a certain amount of renewable energy is available free
of charge. The main contribution of this paper, though, is the first theoretical analysis of a
second, much richer, variant which we call P2. Here there is no limit on how many times
each appliance is run, but the house has internal temperature constraints and appliances are
air-conditioning (AC) units used to keep the internal temperature within such constraints. In
the forthcoming sections we investigate the effect of energy cost variability as well as the
type and distribution of the AC units on the problem complexity. If there are many units the
problem is NP-hard, in the variable cost scenario. Therefore the most interesting case is that
of an apartment with a single unit. If the device can operate at many different temperature
states the problem is NP-hard. However if the AC unit only has a single operating mode
then the problem can be solved efficiently. This is simple if the energy cost is fixed, how-
ever, if the cost varies, we found that the existence of an efficient algorithm solution depends
crucially on the house thermal inertia. Our main algorithmic result on the problem at hand
involves the study of the properties of a minimization version of KNAPSACK, which may be
of independent interest.

Variants of the allocation problem considered here have been studied before [11,14,17,
7]. In fact research in domestic energy management, technologies for the smart grid, and
home automation is thriving with hundreds of papers published every year and dozens of
conferences and journals devoted to these topics. However it seems that most of the effort
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concentrated on finding feasible allocation heuristics, while relatively little [3] attention has
been given to the scalability of such heuristics or the problems complexity. Some of these
problems are related to machine scheduling [6] and bin packing [16]. But the way in which
the appliances are used, their arrangement and different price strategies are specific features
of the smart grid setting. Problem P2 is related to the minimum cost resource allocation
studied in [9] and the capacitated covering problems of [8]. However our hardness proofs
hold in simpler cases than those considered in the cited papers, and nobody seems to have
considered exact polynomial time algorithms for non-trivial special cases.

In the next Section we focus on P1. We define the problem and discuss its complexity.
In Section 3 we work on P2. We start by providing all relevant definitions. Then we analyze
the problem’s complexity first in the case of many appliances (Section 3.1) then looking at
single room single appliance systems (Section 3.2 and 3.3). The main result of this paper is
the design of a polynomial time strategy for the optimization problem P2 in the case of a
single AC unit, with a single operating state, in a poorly isolated house. In all our complexity
results if Π1 and Π2 are two computational problems then Π1 ≤ Π2 will stand for the
statement “Π1 is polynomial time reducible to Π2” in the sense that there is a polynomial
time algorithm translating instances ofΠ1 into instances ofΠ2 that preserve solvability (the
reader is referred to [13] for all basic complexity theoretic definitions and notations).

2 Allocating ”Must Use” Appliances

In this section we focus on problem P1. The given house contains n appliances, identified
by the integers 1, . . . , n. The model presented in [5] is quite general but to simplify our
presentation we restrict ourselves mainly to so called uniphase interruptible appliances: at
each time step t each unit i is either ”OFF” or it is ”ON” and if it is ”ON” it uses an amount
of power equal to αi. Each appliance’s state can be changed freely at any time. Given τ
consecutive time steps the goal is to run each appliance exactly once for a single time step,
minimizing the total energy cost for the house. The problem admits a natural Linear Program
formulation. The total amount of electricity needed at time t is

∑
1≤i≤n αi ·xi(t) where, for

each i ∈ {1, . . . , n}, xi(t) = 1 (resp. xi(t) = 0) if appliance i is ON (resp. OFF) at time
t. Electricity may come either from the NEG or from the local renewable power generator.
Let G(t) (resp. L(t)) denote the amount of power taken from the generator (resp. from the
NEG) at time t. Problem P1 is then described as follows (bold typeface symbols denote
vectors with τ components, so, for instance, P = (P (1), . . . , P (τ)), etc and notations like
“x · y” have the usual algebraic interpretation):

min λT · L+ γT ·G s.t.

1T · xi = 1 ∀i ∈ {1, . . . , n}
G ≤ P

L+G =
∑

1≤i≤n αi · xi
xi ∈ {0, 1}(τ) ∀i ∈ {1, . . . , n}

where the vector xi describes the state of appliance i at each time step, the first constraint
forces xi(t) to be one at a single point t, the second one forces the required amount of re-
newable power not to be larger than the total renewable power available, the third constraint
is an energy balance one, and the last one restricts the range of the vectors xi.

Note that if the number of appliances is fixed the set of feasible solutions for instances
of P1 can be enumerated in time polynomial in τ . In fact this is true also if we required each
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Fig. 1 Multiphase appliance, with three phases each running for four time steps, using power α1, α2, and
α3 respectively.

appliance to be used an arbitrary, but fixed, number of times, or if the appliances had any
of the more complex energy usage patterns defined in [5] (Figure 1 gives an example of the
energy requirements for a multiphase non-interruptible appliance.) Also, if the system has
no renewable power generator then, again, the allocation is easy as we can simply allocate
everything at a time for which λ(t) is minimal. Conversely, if the number of appliances
is large the problem is NP-hard, even for τ = 2 [3,5]. Here we strengthen such result.
Arikiez et al. [5] evaluate the performances of an exact algorithm for P1 and observe that
they degrade rapidly if n or τ become large. However it is not clear whether a so called
pseudo-polynomial [13, Chapter 4] algorithm may exist that allow P1 to be solved in time
polynomial in the magnitude of the numbers involved in the problem instance (this has
proved to be beneficial in practical contexts [4]). Our next result makes this rather unlikely.

The 3-PARTITION problem is defined as follows (see [13]):

DATA: a1, . . . , a3m positive integers adding up to mB such that each ai satisfies B/4 <
ai < B/2.

SOLUTION: A partition of the given set of numbers into m blocks such that the sum of the
elements in each block is equal to B.

It is well-known that 3-PARTITION is NP-hard in the strong sense (see [13, p.99]) and this
in turns rules out the possibility of a pseudo-polynomial time algorithm for this problem
(unless P=NP). We describe a reduction from 3-PARTITION to the decision version of P1
that preserves strong NP-hardness. This leads to the following result.

Theorem 1 Problem P1 is NP-hard in the strong sense.

Proof We show that a generic instance of 3-PARTITION can be reduced to the decision
version of P1 with a pseudo polynomial transformation (as defined in [12]). Let a1, . . . , a3m
and B > 0 be an instance of 3-PARTITION. Define an instance of P1 by taking τ = m, and
using 3m appliances with αi = ai for each i ∈ {1, . . . , 3m}. Assume that there is a single
renewable power generator. Let γ(t) = 0, and P (t) = B, for all t ∈ T . Set λ(t) to be some
arbitrary fixed positive value.

The transformation preserves strong NP-hardness since the largest numerical value of
the resulting instance is B < 4 · a1. It is easy to see that if there is partition in m blocks
then there is an appliance allocation over τ(= m) time steps that uses all renewable power
available and costs nothing. Conversely, if there is no good partition then there must be a
time step t in which we need more than P (t) energy (and hence we must pay for it, buying
it from NEG). ut
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3 Controlled Temperature Environments

So far we have looked at energy optimisation in a rather isolated environment: a house
connected to several energy sources, has a number of appliances that consume energy and
need to be scheduled in a given time window. In this section we change this in two ways.
First, appliances do not correspond to tasks that must be executed at all costs. Second, the
house sits in an environment that exchange heat with the building. In this context appliances
should be thought of as air conditioning (AC) units used to control the interior temperature.
This second framework is again inspired by the work in [5] but as in Section 2, our goal is
to understand the problem features that affect its complexity and for this reason the model
is presented in a somewhat simplified fashion.

The given house is split into a set S of rooms, each having a thermostat for measuring
the room temperature. The external environment affects the house in two ways. First, like
before, the house can use the renewable energy generated by a single local micro-generation
plant. Second, the house sits in an environment whose temperature Tout is known in ad-
vance throughout the time window of interest. Each room s ∈ S contains ns > 0 AC units.
Each unit can either be OFF or making a certain contribution to the temperature of the room
it is in. Assume that unit i in room s has a finite set of allowed temperatures contributions
∆Ts,i = {T s,i1 , . . . , T s,ins,i

}. Positive (negative) elements of ∆Ts,i correspond to the ap-
pliance being used as a heater (resp. cooler). The goal is to keep each room’s temperature
in a predefined comfort interval [T smin(t), T

s
max(t)] for all t ∈ T . Following [15], for each

room s, we assume that the room temperature at time t, denoted by Ts(t), is linked to the
outside temperature and the room’s units behaviour by the equation:

∀t ∈ T Ts(t) = ε · Ts(t− 1) + (1− ε)(Tout(t) + xs(t)), (1)

where xs(t) is the average of the contributions of all appliances in the room that are ON
at time t and ε ∈ [0, 1] is an inertia factor. A discussion on the validity of (1) is beyond
the scope of this paper (the interested reader is referred to [15]). However it is instructive
to understand how the formula works. The room temperature at time t is viewed as a linear
combination of its temperature at time t−1 and contributions from external sources, and that
of the air conditioning appliances it contains. The coefficients of this combination depend
on physical properties of the house, like its volume or the materials it is made of. Note that,
if ε = 1, the internal environment is perfectly isolated from the outside and, in fact, we
also have no way to control the internal temperature. On the other hand, if ε = 0, then
there is no isolation and the system has no memory. At every moment in time the internal
temperature is equal to the external one plus a value dependent on the contribution of the
AC units. Therefore, to avoid trivialities, from now on we further assume that 0 < ε < 1.
The problem of interest admits a natural mixed integer linear programming formulation:

min λT · L+ γT ·G s.t.

G ≤ P

L+G =
∑
s∈S

∑ns

i=1
1
ηs
i

∑ns,i

j=1 |T
s,i
j |y

s,i
j

xs = 1
ns

∑ns

i=1

∑ns,i

j=1 T
s,i
j ys,ij ∀s ∈ S∑ns,i

j=1 y
s,i
j ≤ 1 ∀s ∈ S, i ∈ {1, . . . , ns}

ys,ij ∈ {0, 1}
(τ) ∀s ∈ S, i ∈ {1, . . . , ns}, j ∈ {1, . . . , ns,i}

Eε · xs ≥ Tsmin ∀s ∈ S
Eε · xs ≤ Tsmax ∀s ∈ S
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where ys,ij (t) is one (resp. zero) if the ith appliance in room s is in state j at time t. Binary
variables ys,ij (t) are use to model the fact that each AC unit can only be in one of its ns,i
states at any given time step. Discrete variables xs(t) model the temperature change in room
s at time t. We are after an assignment to these variables that minimize the cost of the house
appliances and keeps the temperature of room s in the comfort ranges [T smin(t), T

s
max(t)]

for every t ∈ T and s ∈ S. The first four sets of constraints model the energy allocation
process. The right-hand side of the second one is a vector describing the total amount of
energy used by the house. Here ηsi > 0 is the efficiency of unit i in room s, thus if the unit
contributes T s,ij in a particular time step, then |T s,ij |/η

s
i is the amount of power needed by

the unit during that step. The last three sets of constraints restrict the appliance choices at
any given time to those that keep the room temperatures within the prescribed limits. Notice
that the recursive contraints (1) have been solved and the internal temperature variables Ts
replaced by their values (1 − ε)Fε[Tout + xs] + Tε. Here Eε and Fε are the following
τ × τ matrices:

Eε =


ετ−1 0 . . . . . . 0
ετ−1 ετ−2 0 . . . 0

...
...

. . .
. . .

...
ετ−1 ετ−2 . . . ε 0
ετ−1 ετ−2 . . . ε 1.

 Fε =


1 0 . . . 0

ε 1
. . .

...
...

. . .
. . . 0

ετ−1 . . . ε 1

 .

Also, the bounds on the products Eε · xs, which, abusing notations, we still call Tsmin and
Tsmax, are, in fact, the only part of this model that depends on the initial internal tempera-
ture, the comfort limits, and the outside temperature. They stand for, respectively

ετ (
1

1− ε (T
s
min −Tsε)− Fε ·Tout) and ετ (

1

1− ε (T
s
max −Tsε)− Fε ·Tout)

with
(ετ )T = (ετ−1, ετ−2, . . . , 1), (2)

and TT
ε = Ts(0) · (ε, ε2, . . . , ετ ).

3.1 Many Heathers

We first consider the case of a house containing many AC units. First assume that they
are all part of a single room. Starting from [10], various authors have defined a natural
minimization version of the classical KNAPSACK problem. For future reference denote by
MINSACK(w,p,M) an instance of such problem involving item weights w, profits p and
knapsack bound M . This is exactly the problem we are interested in here where items cor-
respond to appliances, and the allocation is over a single time step. Next, we will show
that many single state heaters make P2 NP-hard even if the heaters are installed in differ-
ent rooms in a variable energy price regime. In what follows PARTITION is the well-known
NP-hard [13, Problem SP12] computational problem defined as follows:

DATA: a1, ..., an positive integers.
SOLUTION: a subset I ⊆ {1, . . . , n} such that

∑
i∈I ai =

∑
i∈{1,...,n}\I ai.

Theorem 2 PARTITION ≤ P2.
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Proof Each instance of PARTITION is translated into an instance of P2 having τ = 2, n
rooms, each equipped with a single heater having a single “ON” state. Value as becomes
the amount of energy needed by the unit in room s to run in a single time step. Thus for each
s ∈ {1, . . . , n}, T s = ηs · as (the house and the rooms thermostatic parameters ε and ηs
can be chosen arbitrarily). For each s ∈ {1, . . . , n} we set T smin(1) is an arbitrary negative
number and choose T smin(2) in the interval (0, ε T s), Similarly we choose T smax(1) > ε T i

and T smax(2) ∈ (T s, (1 + ε) T s). P (1) = P (2) = 1
2

∑
as and we assume that renewable

energy costs nothing, whereas the energy from the grid has an arbitrary price λ.
To complete the proof we need to show that if a1, . . . , an is a “YES” instance of PAR-

TITION then the resulting instance of P2 can be solved with an allocation that has zero cost
and if a1, . . . , an is a “NO” instance of PARTITION any solution of P2 will have a positive
cost. This will follow from a key property shared by all solutions to the instances of P2
under consideration: each solution requires each of the n heaters to be switched on exactly
once. To prove this notice that the temperature constraints simplify to

Tsmin/T
i ≤

(
ε 0
ε 1

)
· ys ≤ Tsmax/T

i

and the product in the middle, depending on the value y, is equal to
(
0
0

)
,
(
ε
ε

)
,
(
0
1

)
, or(

ε
1 + ε

)
. But only the two middle values (corresponding to ys having only one of the two

components equal to one) satisfy the stated inequalities.
Suppose now that the given instance of PARTITION is a “YES” instance and let I be one

of its solutions. Then scheduling all units in I to run at the same time step will result in a
feasible solution for P2 with cost zero. Conversely if the given instance of PARTITION is a
“NO” instance then any solution of P2 must have a positive cost. ut

The upshot of the analysis in this section is that P2 does not seem very easy to solve if
the system contains a large number of AC units. In the rest of the paper we will concentrate
on increasingly restricted versions of this problem.

3.2 One Heater, A Hard Case

From now on we focus on a further restriction, which we call PS, obtained by assuming that
the house only contains one room, that there is always enough renewable power, and that the
single AC unit can be used in n different states, all of them providing a positive temperature
contribution. We start our analysis by showing that PS is still NP-hard if the electricity price
varies and n is large. The SUBSETSUM problem [13, Problem SP13] is defined as follows:

DATA: a1, ..., an and M positive integers.
SOLUTION: a subset I ⊆ {1, . . . , n} such that

∑
i∈I ai =M .

Theorem 3 SUBSETSUM ≤ PS.

Here PS denotes the decision version of the energy allocation problem at hand. The
reduction translates each instance of SUBSETSUM to an instance of PS involving a single
heater with many different (positive) temperature contributions. Let a1, a2, . . . , an and M
define an instance of SUBSET SUM. We set τ = n. Furthermore set

– ε = 1
2 min

(
1

τ max{ai} ,
1
M

)
;
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– the energy prices γ(t) = ετ−t for all t ∈ T ,
– the heater temperature contributions Tj = aj/ε

τ−j for all j ∈ {1, . . . , n}, and η = 1,
and

– finally set Tmin(t) = 0 for all t ∈ T \ {τ} and Tmin(τ) =M .

We argue that the SUBSETSUM instance is a “YES” instance if and only if the instance of
PS admits a solution of cost M . First notice that with these choices we can easily see that
the first τ − 1 temperature constraints are always verified since expressions∑

1≤i≤t

∑
1≤j≤n

Tj · yj(i) · ετ−i t ∈ T \ {τ}

are non-negative. Denote by Ψ the problem’s objective function. The last temperature con-
straint actually implies that a “YES” instance of PS must have Ψ = M . The next lemma
states a property that can be used to complete the proof of Theorem 3.

Lemma 1 If y is a solution of our reduced problem then for all t ∈ T we have x(t) = Tt
or x(t) = 0.

Proof We will show that for all t ∈ T we have x(t) 6∈ {T1, . . . , Tt−1} and then that
x(t) 6∈ {Tt+1, . . . , Tτ}. The first step just comes from the fact that if we have a t such as
x(t) = Tl with l < t we would have ετ−t ·x(t) = ετ−t ·Tl = ετ−t ·al/ετ−l = al/ε

t−l ≥
al/ε and since ε < 1/M this value is greater than M . So the objective function would also
be greater that M . Now to the second step. Suppose we have found a solution such that
Ψ = M and that for some t ∈ {1, . . . , n} we have x(t) = Tl with l > t. Let A be the
set of these t, we decompose Ψ in two sums:

∑
t 6∈A ε

τ−t · x(t) +
∑
t∈A ε

τ−t · x(t) =M .
Note that since we already proved that for all t ∈ T we have x(t) 6∈ {T1, . . . , Tt−1} what
we sum in the first sum are either 0s or ats and the first sum is an integer. Let’s take a closer
look at the second sum: for all t ∈ A we have a lt such that x(t) = Tlt with lt > t by
definition, so we have:∑
t∈A

ετ−t · x(t) =
∑
t∈A

ετ−t · alt
ετ−lt

by the choice of x(t)

≤
∑
t∈A

ε · alt since 0 < ε < 1 and lt, t are integers with lt > t

≤ |A| · ε ·max{aj} by defition of max

≤ τ · ε ·max{aj} by defition of A

hence, since ε < 1/τ max{aj}, this sum is less than 1, thus it is not an integer, and this in
turns contradicts the fact that M and the first sum are integers. ut

3.3 Polynomial Time Algorithms

So far we have discovered that instances of PS involving variable energy costs and heaters
with many temperature levels may be hard to solve. We complete this section by describing
a variant of PS that can be solved in polynomial time. Consider the following problem:

min γT · y s.t.

y ∈ {0, 1}(τ)
Eε · y ≥ Tmin
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Algorithm Greedy
Require: Tmin, ε

1: y = 0
2: for t := 1 to τ do
3: i := 0
4: while Tmin(t) >

∑
1≤x≤t y(x) · ε

τ−x and i < t do
5: y(t− i) := 1
6: increment i
7: end while
8: if i = t and Tmin(t) >

∑
1≤x≤t y(x) · ε

τ−x then exit /* ”no solution” */
9: end if

10: end for
11: return y

If the electricity price is fixed (ie wlog γ = 1), there is a single heater which can either be
“OFF” or in a single “ON” state contributing some value T to the house temperature, then
we claim that Algorithm Greedy can be used to find an optimal solution for the problem
above in polynomial time. The idea is to solve the τ constraints Eε · y ≥ Tmin iteratively,
one by one. The algorithm while loop has the task of trying to build a vector y that satisfy
the temperature constraints. It is easy to argue (formally by induction on t) that after the
t-th iteration of the main for loop, if we did not enter the if on line 8, then y(1), . . . , y(t)
is a minimal solution of the problem. Note that the left-hand side of the t-th inequality,∑

1≤x≤t y(x)·ε
τ−x, is just y(t)·ετ−t plus the left-hand side of the t−1-th inequality. Hence

if the process reached stage t either
∑

1≤x≤t−1 y(x) · ε
τ−x ≥ Tmin(t), in which case the

same assignment will be picked up in the while loop in stage t or
∑

1≤x≤t−1 y(x) ·ε
τ−x <

Tmin(t), in which case a different assignment will be computed. The new assignment will
satisfy all previous constraints because of the order in which variables y(x) are set (starting
from the ones multiplying the largest monomials ετ−x).

The analysis so far leaves the variable energy cost case open. While we are not able to
answer this in full in the reminder of this section we present a polynomial time strategy to
solve the problem above provided ε is a positive constant smaller than 1/2. In what follows
we denote this problem as PS(12 ). The result hinges on a particular property of the sequence
ετ , as defined in (2), and on the computational feasibility of a class of KNAPSACK instances
involving sequences of this type. The main result of this section is the following:

Theorem 4 PS(12 ) can be solved in polynomial time.

A sequence of non-negative real numbers w = (w(1), . . . , w(a)) is left independent if
for all positive integers j ≤ a we have

∑j−1
i=1 w(i) < w(j). Note that if w is left indepen-

dent, then so is any of its prefixes wi = (w(1), . . . , w(i)), for i < a. Also, it is easy to see
that the sequence ετ is left independent, provided ε ∈ (0, 1/2). Left independent sequences
also have another important property.

Lemma 2 MINSACK(w,p,M) can be solved in polynomial time, for any profit vector p
and bound M , provided w is left independent.

Proof Algorithm EKP solves MINSACK(w,p,M) in polynomial time if w is left indepen-
dent. The process returns the empty set if M ≤ 0, otherwise it searches for the greatest
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Algorithm EKP
Require: w, p, and M

1: i := a
2: while i > 0 and w(i) ≥M do decrement i
3: end while
4: if i = 0 then
5: if M > 0 then return argmin1≤j≤a(p(j))
6: else return ∅
7: end if
8: else
9: S := EKP(wi−1, pi−1, M − w(i))

10: if mini<j≤a(p(j)) <
∑
j∈S p(j) + p(i) then return argmini<j≤a(p(j))

11: else return S ∪ {i}
12: end if
13: end if

w(i) for i ≤ a lower than M and run recursively on i and M − w(i). It then compares∑
j∈S p(j) + p(i) with the lowest p(j) with j > i and return S ∪ {i} if the former was

lower and {j} otherwise.
We prove that EKP works as promised by induction on a. The case a = 1 is simple:

if w(1) ≥ M > 0 we return {1} and if M ≤ 0 we return ∅. Suppose now the algorithm
works for 1, 2, ..., a − 1. The first case of the main if doesn’t really need any comment: if
M ≤ 0 then ∅ is the best solution and else we choose the j minimizing p(j) since all the
w(j) work. To show that the algorithm works in the second case we just have to prove that
S ∪ {i} is the smallest solution without a j > i. It’s quite simple to show: since we have∑

1≤j≤i−1 w(j) < w(i) < M if we don’t take a j > i then we are forced to take i and so
we just have to find the minimal solution for MINSACK(wi−1,pi−1,M − w(i)) which is
exactly S by induction hypothesis. ut

In what follows if S ⊂ T let χS ∈ {0, 1}τ be the vector of size τ such that χS(t) =
1 ⇐⇒ t ∈ S. Also, minS (resp. maxS) is the smallest (largest) element of S and
if t1 ≤ t2, then [t1..t2] denotes the set {t1, t1 + 1, . . . , t2}. Finally for any S ⊂ T let
v(S) =

∑
t∈S ε

τ−t and for any vector p of size τ denote p[S] the expression
∑
t∈S p(t).

Lemma 3 Let p be a vector of size τ and S1, S2 ⊂ T .

1. If S1, S2 are disjoint then v(S1∪S2) = v(S1)+v(S2) and p[S1∪S2] = p[S1]+p[S2].
2. The function v is injective.
3. v(S1) < v(S2) if and only if there exist t ∈ T \ S1 and S ⊂ [1..t − 1] such that
S2 = (S1 \ [1..t]) ∪ {t} ∪ S.

Proof The first claim is trivial. Suppose S1 6= S2, we will show that v(S1) 6= v(S2). Let
t = maxS1∆S2, where S1∆S2 is the symmetric difference of S1 and S2. Without loss
of generality we may assume that t ∈ S2. Then by the left independence of ετ we have
v(S1 ∩ [1..t]) < ετ−t ≤ v(S2 ∩ [1..t]). This in turns implies that v(S1 ∩ [1..t]) + v(S1 \
[1..t]) < v(S2 ∩ [1..t]) + v(S2 \ [1..t]), also using S1 \ [1..t] = S2 \ [1..t]. The result now
follows by the first part of the statement as v(S1) < v(S2).

We now argue about the final claim. If there exists a t as stated such that S2 = (S1 \
[1..t]) ∪ {t} ∪ S then by left independence we have v(S1 ∩ [1..t]) < ετ−t since t 6∈ S1.
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Therefore:

v(S1) = v(S1 ∩ [1..t]) + v(S1 \ [1..t]) by the first statement

< ετ−t + v(S1 \ [1..t])

≤ v(S) + ετ−t + v(S1 \ [1..t]) for any S ⊂ [1..t− 1]

= v(S2) again by the first statement

Conversely, let t = maxS1∆S2. Then it must be t ∈ S2 since otherwise by definition
of the symmetric difference we would have S1 \ [1..t] = S2 \ [1..t] and so, by the same
argument used to prove the other implication, we would have

v(S2) = v(S2 ∩ [1..t]) + v(S2 \ [1..t]) = v(S2 ∩ [1..t− 1]) + v(S2 \ [1..t])

< ετ−t + v(S2 \ [1..t]) = ετ−t + v(S1 \ [1..t])
< v(S1)

which is not possible by hypothesis. Hence S2 = (S1 \ [1..t]) ∪ {t} ∪ S with S = S2 ∩
[1..t− 1] ⊂ [1..t− 1] ut

If M is a positive real number, we call ε-decomposition of M the subset Sε(M) of T such
that:

v(Sε(M)) = min{v(I) | I ⊂ T and v(I) ≥M}.

Thus v(Sε(M)) is the smallest number greater than M which can be written as a sum of
powers of ε` for ` ∈ T . Note that Sε(M) can be computed as MINSACK(ετ , ετ ,M).

We are now ready to complete the proof of Theorem 4. We claim that algorithm Main
takes Tmin, the cost function γ and ε as arguments and returns an optimal solution to
the given instance of PS(12 ) in time polynomial in τ . The process starts by creating the ε-
decompositions of the numbers Tmin(t) and stores them in the array Sol (at the same time
checking whether the given problem is trivially unfeasible). The second loop is the main part
of the algorithm. In the tth iteration we focus on Sol[t] (assuming it is not empty). Thanks
to the left independence of the rows of Eε, instead of searching the minimal combination
satisfying the first t constraints among all the possible combinations, we can concentrate
on a set of less than τ possibilities. Then we update the rest of Sol in order to simplify the
search of solutions in the next iterations.

Note that all the set operations, computations of γ[S], v(S), and Sε(Tmin(t)) can be
done (using algorithm EKP as a subroutine) in timeO(τ); all loops have at most τ iterations
and we have a maximum of two interlocked loops. Hence Algorithm Main runs in O(τ3).

Next we argue that Algorithm Main returns a solution if and only if the given instance
I of PS(12 ) is feasible. This can be seen through the following chain of equivalences:

there is a solution ⇐⇒ T is a solution

⇐⇒ ∀t ∈ T Tmin(t) ≤
∑

k∈[1..t]

ετ−k

⇐⇒ ∀t ∈ T v(Sε(Tmin(t))) ≤
∑

k∈[1..t]

ετ−k

(by definition of ε-decomposition)

⇐⇒ Main returns a solution (by left independence),
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Algorithm Main
Require: Tmin, γ, ε

1: let Sol be an array of sets all initialized to ∅
2: let Aux := ∅
3: for t = 1 to τ do
4: let Sol[t] be the ε-decomposition of Tmin(t)
5: if Sol[t] ∩ [t+ 1..τ ] 6= ∅ then print ”no solution” and exit
6: end if
7: end for
8: for t := 1 to τ do
9: if Sol[t] 6= ∅ then

10: Aux := Sol[min Sol[t]− 1] ∪ Sol[t]
11: for k ∈ [min Sol[t].. t]\Sol[t] do
12: if γ[Aux] > γ[Sol[k − 1] ∪ {k} ∪ (Sol[t] \ [1..k])] then
13: Aux := Sol[k − 1] ∪ {k} ∪ (Sol[t] \ [1..k])
14: end if
15: end for
16: Sol[t] := Aux
17: for j := t+ 1 to τ do
18: if v(Sol[j] ∩ [1..t]) ≤ v(Sol[t]) then Sol[j] := Sol[j] \ [1..t]
19: end if
20: end for
21: end if
22: end for
23: return Sol[τ ]

To complete the proof of the Theorem we need to argue that if S is returned by Main it is
an optimal solution to I. In what follows, given an instance I of PS(12 ), for t ∈ T , denote
by It the sub-problem of obtained using (Eε)t, the sub-matrix of Eε formed by the first t
rows and columns, and the prefixes (Tmin)t and γt. Note that I coincides with Iτ . Also if
1 ≤ k < t and S is such that (Tmin)t ≤ (Eε)t · χS then (Tmin)k ≤ (Eε)k · χS∩[1..k],
since, for each j ∈ {1, . . . , k}, only the first j elements of the jth row of Eε are non-zero.

Assume that we ran Main and that the algorithm returned a solutions. We will show by
induction on t that Sol[t] (seen as a set in [1..t]) is a solution to the sub-problem of size t.
The case t = 1 is obvious. We suppose now that Sol[k] is a solution to the sub-problem of
size k for 1 ≤ k < t and we want to show that Sol[t] is a solution to the sub-problem of
size t.
First show that we have (Tmin)t ≤ (Eε)t · χSol[t]. By construction we have Sol[t] =
Sol[k − 1] ∪ {k} ∪ (Sε(Tmin(t)) \ [1..k]) for m ≤ k ≤ t with m being the minimum of
Sol[t] at the begining of the tth iteration. Therefore, by induction hypothesis (Tmin)k−1 ≤
(Eε)k−1 · χSol[k−1] = (Eε)k−1 · χSol[t]∩[1..k−1]. Let’s now consider k ≤ j < t. We
must have v(Sol[j]) < v(Sε(Tmin(t)) ∩ [m..j]) since otherwise we would have j < m
because of the for loop on lines 17 to 20 in Algorithm Main, which isn’t possible sincem ≤
k ≤ j. So, by induction hypothesis, Tmin(j) ≤ v(Sol[j]) < v(Sε(Tmin(t)) ∩ [m..j]) ≤
v(Sε(Tmin(t)) ∩ [1..j]) < v(Sol[t] ∩ [1..j] by Lemma 3, since k 6∈ Sε(Tmin(t)), and this
for all j ∈ [k..t − 1]. Finally by Lemma 3 we also have Tmin(t) ≤ v(Sε(Tmin(t))) ≤
v(Sol[t]).



Complexity of Energy Allocation Problems 13

Now take another feasible solution S ⊂ [1..t]. We will show that γ[Sol[t]] ≤ γ[S]. Since
(Tmin)t ≤ (Eε)t · χS , we also have that v(Sε(Tmin(t))) ≤ v(S) and so by Lemma 3
there exist j ∈ [1..t] \ Sε(Tmin(t)) ∪ minSε(Tmin(t)) and S′ ∈ [1..j − 1] such that
S = (Sε(Tmin(t)) \ [1..j]) ∪ {j} ∪ S′ (with j = minSε(Tmin(t))) in case of equality
since v is injective). If j < m then we have S \ [1..m − 1] = Sε(Tmin(t)) \ [1..m − 1]
and so by induction hypothesis we have:

γ[Sol[m− 1]] ≤ γ[S ∩ [1..m− 1]]

γ[Sol[m− 1]] + γ[Sε(Tmin(t)) \ [1..m− 1]] ≤ γ[S ∩ [1..m− 1]] + γ[S \ [1..m− 1]]

γ[Sol[m− 1] ∪ {m} ∪ (Sε(Tmin(t)) \ [1..m])] ≤ γ[S]

where the last inequality follows from Lemma 3 and since m ∈ Sε(Tmin(t)). This gives
γ[Sol[t]] ≤ γ[S] since γ[Sol[t]] ≤ γ[Sol[m − 1]] ∪ {m} ∪ (Sε(Tmin(t)) \ [1..m])) by
construction. Now if j ≥ m similarly we have S \ [1..j−1] = {j}∪ (Sε(Tmin(t))\ [1..j])
and so:

γ[Sol[j − 1]] ≤ γ[S ∩ [1..j − 1]]

γ[Sol[j − 1]] + γ[{j} ∪ Sε(Tmin(t)) \ [1..j]] ≤ γ[S ∩ [1..m− 1]] + γ[S \ [1..j − 1]]

γ[Sol[j − 1] ∪ {j} ∪ (Sε(Tmin(t)) \ [1..j])] ≤ γ[S],

which gives us again γ[Sol[t]] ≤ γ[S].

4 Conclusion

We studied a number of energy allocation optimization problems which may occur in do-
mestic buildings. Two broad cases were considered: a “must-use” scenario where a set of
appliances must be scheduled over a given time horizon, and a “comfort-aware” scenario
where the appliances help to satisfy a predefined environment comfort level. In all cases
we were interested in minimal energy cost solutions. Our main goal was to investigate the
computational complexity of the relevant problems and characterize the border between
polynomial-time tractability and NP-hardness. We studied the effect of the number of appli-
ances on the complexity of problems of the first type, and that of the type and distribution of
the AC units, as well as the energy price and the thermal properties of the given environment
on problems of the second type. The main result of the paper is a proof that although it is
NP-hard to schedule the operation of a single air-conditioning (AC) unit, working at various
temperature levels in a variable energy price regime, there is a polynomial time algorithm
for controlling one such device working at a single temperature level, for houses with low
thermal inertia. The proof of such result uses the algorithmic properties of a variant of the
well-known KNAPSACK problem.

References

1. European SmartGrids Technology Platform. Directorate-General for Research.
Sustainable Energy Systems. Report EUR 22040, 2006. Available from
https://ec.europa.eu/research/energy/pdf/smartgrids en.pdf. (July 2016).

2. What is the Smart Grid? U.S. Department of Energy, 2016. URL:
https://www.smartgrid.gov/the smart grid/ [July 2016].



14 Theo Karaboghossian, Michele Zito

3. Agnetis, A., de Pascale, G., Detti, P., Vicino, A.: Load scheduling for household energy consumption
optimization. IEEE Transactions on Smart Grid, 4, 2364–2373 (2013)

4. Arikiez, M. K., Gatens, P., Grasso, F., Zito, M. Smart domestic renewable energy management using
knapsack. In IEEE PES ISGT Europe, 2013.

5. Arikiez, M., Grasso, F., Zito, M.: Heuristic algorithm for coordinating smart house in microgrid. In
IEEE International Conference on Smart Grid Communications, (2015)

6. Azar, Y. On-line load balancing. In A. Fiat, editor, Online Algorithms, volume 1442 of LNCS, pages
178–195. Springer-Verlag, 1996.

7. Burcea, M., Hon, W.-K., Liu, H.-H., Wong, P.W.H., Yau, D.K.Y. Scheduling for electricity cost in
smart grid. In P. Widmayer, Y. Xu, and B. Zhu, editors, Computing and Combinatorics; 19th Annual
International Conference, COCOON 2013, volume 8287 of LNCS, pages 306–317. Springer-Verlag,
2013.

8. T. Carnes and D. Shmoys. Primal-dual schema for capacitated covering problems. In A. Lodi, A. Pan-
conesi, and G. Rinaldi, editors, Integer Programming and Combinatorial Optimization: 13th Interna-
tional Conference, IPCO 2008, volume 5035 of Lecture Notes in Computer Science, pages 288–302.
Springer-Verlag, 2008.

9. V. T. Chakaravarthy, A. Kumar, G. R. Parija, S. Roy, and Y. Sabharwal. Minimum cost resource allo-
cation for meeting job requirements. In 2011 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 14–23. CPS, 2011.
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