375 research outputs found

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    On multi-user EXIT chart analysis aided turbo-detected MBER beamforming designs

    No full text
    Abstract—This paper studies the mutual information transfer characteristics of a novel iterative soft interference cancellation (SIC) aided beamforming receiver communicating over both additive white Gaussian noise (AWGN) and multipath slow fading channels. Based on the extrinsic information transfer (EXIT) chart technique, we investigate the convergence behavior of an iterative minimum bit error rate (MBER) multiuser detection (MUD) scheme as a function of both the system parameters and channel conditions in comparison to the SIC aided minimum mean square error (SIC-MMSE) MUD. Our simulation results show that the EXIT chart analysis is sufficiently accurate for the MBER MUD. Quantitatively, a two-antenna system was capable of supporting up to K=6 users at Eb/N0=3dB, even when their angular separation was relatively low, potentially below 20?. Index Terms—Minimum bit error rate, beamforming, multiuser detection, soft interference cancellation, iterative processing, EXIT chart

    Iterative Multiuser Minimum Symbol Error Rate Beamforming Aided QAM Receiver

    No full text
    A novel iterative soft interference cancellation (SIC) aided beamforming receiver is developed for high-throughput quadrature amplitude modulation systems. The proposed SIC based minimum symbol error rate (MSER) multiuser detection scheme guarantees the direct and explicit minimization of the symbol error rate at the output of the detector. Adopting the extrinsic information transfer (EXIT) chart technique, we compare the EXIT characteristics of an iterative MSER multiuser detector (MUD) with those of the conventional minimum mean-squared error (MMSE) detector. As expected, the proposed SIC-MSER MUD outperforms the SIC-MMSE MUD. Index Terms—Beamforming, iterative multiuser detection, minimum symbol error rate, quadrature amplitude modulation

    Design and optimization of joint iterative detection and decoding receiver for uplink polar coded SCMA system

    Get PDF
    SCMA and polar coding are possible candidates for 5G systems. In this paper, we firstly propose the joint iterative detection and decoding (JIDD) receiver for the uplink polar coded sparse code multiple access (PC-SCMA) system. Then, the EXIT chart is used to investigate the performance of the JIDD receiver. Additionally, we optimize the system design and polar code construction based on the EXIT chart analysis. The proposed receiver integrates the factor graph of SCMA detector and polar soft-output decoder into a joint factor graph, which enables the exchange of messages between SCMA detector and polar decoder iteratively. Simulation results demonstrate that the JIDD receiver has better BER performance and lower complexity than the separate scheme. Specifically, when polar code length N=256 and code rate R=1/2 , JIDD outperforms the separate scheme 4.8 and 6 dB over AWGN channel and Rayleigh fading channel, respectively. It also shows that, under 150% system loading, the JIDD receiver only has 0.3 dB performance loss compared to the single user uplink PC-SCMA over AWGN channel and 0.6 dB performance loss over Rayleigh fading channel

    PAPR Constrained Power Allocation for Iterative Frequency Domain Multiuser SIMO Detector

    Get PDF
    Peak to average power ratio (PAPR) constrained power allocation in single carrier multiuser (MU) single-input multiple-output (SIMO) systems with iterative frequency domain (FD) soft cancelation (SC) minimum mean squared error (MMSE) equalization is considered in this paper. To obtain full benefit of the iterative receiver, its convergence properties need to be taken into account also at the transmitter side. In this paper, we extend the existing results on the area of convergence constrained power allocation (CCPA) to consider the instantaneous PAPR at the transmit antenna of each user. In other words, we will introduce a constraint that PAPR cannot exceed a predetermined threshold. By adding the aforementioned constraint into the CCPA optimization framework, the power efficiency of a power amplifier (PA) can be significantly enhanced by enabling it to operate on its linear operation range. Hence, PAPR constraint is especially beneficial for power limited cell-edge users. In this paper, we will derive the instantaneous PAPR constraint as a function of transmit power allocation. Furthermore, successive convex approximation is derived for the PAPR constrained problem. Numerical results show that the proposed method can achieve the objectives described above.Comment: Presented in IEEE International Conference on Communications (ICC) 201

    Turbo receivers for interleave-division multiple-access systems

    Get PDF
    In this paper several turbo receivers for Interleave-Division Multiple-Access (IDMA) systems will be discussed. The multiple access system model is presented first. The optimal, Maximum A Posteriori (MAP) algorithm, is then presented. It will be shown that the use of a precoding technique at the emitter side is applicable to IDMA systems. Several low complexity Multi-User Detector (MUD), based on the Gaussian approximation, will be next discussed. It will be shown that the MUD with Probabilistic Data Association (PDA) algorithm provides faster convergence of the turbo receiver. The discussed turbo receivers will be evaluated by means of Bit Error Rate (BER) simulations and EXtrinsic Information Transfer (EXIT) charts

    Minimum Symbol Error Rate Turbo Multiuser Beamforming Aided QAM Receiver

    No full text
    This paper studies a novel iterative soft interference cancellation (SIC) aided beamforming receiver designed for highthroughput quadrature amplitude modulation systems communicating over additive white Gaussian noise channels. The proposed linear SIC aided minimum symbol error rate (MSER) multiuser detection scheme guarantees the direct and explicit minimisation of the symbol error rate at the output of the detector. Based on the extrinsic information transfer (EXIT) chart technique, we compare the EXIT characteristics of an iterative MSER multiuser detector (MUD) with those of the conventional minimum mean squared error (MMSE) detector. As expected, the proposed SICMSER MUD outperforms the SIC aided MMSE MUD

    Quantum search algorithms, quantum wireless, and a low-complexity maximum likelihood iterative quantum multi-user detector design

    No full text
    The high complexity of numerous optimal classic communication schemes, such as the maximum likelihood (ML) multiuser detector (MUD), often prevents their practical implementation. In this paper, we present an extensive review and tutorial on quantum search algorithms (QSA) and their potential applications, and we employ a QSA that finds the minimum of a function in order to perform optimal hard MUD with a quadratic reduction in the computational complexity when compared to that of the ML MUD. Furthermore, we follow a quantum approach to achieve the same performance as the optimal soft-input soft-output classic detectors by replacing them with a quantum algorithm, which estimates the weighted sum of a function’s evaluations. We propose a soft-input soft-output quantum-assisted MUD (QMUD) scheme, which is the quantum-domain equivalent of the ML MUD. We then demonstrate its application using the design example of a direct-sequence code division multiple access system employing bit-interleaved coded modulation relying on iterative decoding, and compare it with the optimal ML MUD in terms of its performance and complexity. Both our extrinsic information transfer charts and bit error ratio curves show that the performance of the proposed QMUD and that of the optimal classic MUD are equivalent, but the QMUD’s computational complexity is significantly lower

    Iterative Near-Maximum-Likelihood Detection in Rank-Deficient Downlink SDMA Systems

    No full text
    Abstract—In this paper, a precoded and iteratively detected downlink multiuser system is proposed, which is capable of operating in rankdeficient scenarios, when the number of transmitters exceeds the number of receivers. The literature of uplink space division multiple access (SDMA) systems is rich, but at the time of writing there is a paucity of information on the employment of SDMA techniques in the downlink. Hence, we propose a novel precoded downlink SDMA (DL-SDMA) multiuser communication system, which invokes a low-complexity nearmaximum-likelihood sphere decoder and is particularly suitable for the aforementioned rank-deficient scenario. Powerful iterative decoding is carried out by exchanging extrinsic information between the precoder’s decoder and the outer channel decoder. Furthermore, we demonstrate with the aid of extrinsic information transfer charts that our proposed precoded DL-SDMA system has a better convergence behavior than its nonprecoded DL-SDMA counterpart. Quantitatively, the proposed system having a normalized system load of Ls = 1.333, i.e., 1.333 times higher effective throughput facilitated by having 1.333 times more DL-SDMA transmitters than receivers, exhibits a “turbo cliff” at an Eb/N0 of 5 dB and hence results in an infinitesimally low bit error rate (BER). By contrast, at Eb/N0 = 5 dB, the equivalent system dispensing with precoding exhibits a BER in excess of 10%. Index Terms—Iterative decoding, maximum likelihood detection, space division multiple access (SDMA) downlink, sphere decoding
    corecore