131,752 research outputs found

    ESR of YbRh2Si2 and 174YbRh2Si2 : local and itinerant properties

    Full text link
    Below the Kondo temperature the heavy Fermion compound YbRh2_{2}Si2_{2} shows a well defined Electron Spin Resonance (ESR) with local Yb3+^{3+} properties. We report a detailed analysis of the ESR intensity which gives information on the number of ESR active centers relative to the ESR of well localized Yb3+^{3+} in YPd3_3:Yb. The ESR lineshape is investigated regarding contributions from itinerant centers. From the ESR of monoisotopic 174^{174}YbRh2_{2}Si2_{2} we could exclude unresolved hyperfine contributions to the lineshape.Comment: 3 Figure

    Demonstration of NV-detected ESR spectroscopy at 115 GHz and 4.2 Tesla

    Get PDF
    High frequency electron spin resonance (ESR) spectroscopy is an invaluable tool for identification and characterization of spin systems. Nanoscale ESR using the nitrogen-vacancy (NV) center has been demonstrated down to the level of a single spin. However, NV-detected ESR has exclusively been studied at low magnetic fields, where spectral overlap prevents clear identification of spectral features. Within this work, we demonstrate NV-detected ESR measurements of single-substitutional nitrogen impurities in diamond at a NV Larmor frequency of 115 GHz and the corresponding magnetic field of 4.2 Tesla. The NV-ESR measurements utilize a double electron-electron resonance sequence and are performed using both ensemble and single NV spin systems. In the single NV experiment, chirp pulses are used to improve the population transfer and for NV-ESR measurements. This work provides the basis for NV-based ESR measurements of external spins at high magnetic fields.Comment: 12 pages, 4 figure

    Gravitational Microlensing as a probe of the Electron Scattering Region in Q2237+0305

    Full text link
    Recent observations have provided strong evidence for the presence of an Electron Scattering Region (ESR) within the central regions of AGNs. This is responsible for reprocessing emission from the accretion disk into polarised radiation. The geometry of this scattering region is, however, poorly constrained. In this paper, we consider the influence of gravitational microlensing on polarised emission from the ESR in the quadruply imaged quasar, Q2237+0305, demonstrating how correlated features in the resultant light curve variations can determine both the size and orientation of the scattering region. This signal is due to differential magnification between perpendicularly polarised views of the ESR, and is clearest for a small ESR width and a large ESR radius. Cross- and auto-correlation measures appear to be independent of lens image shear and convergence parameters, making it ideal to investigate ESR features. As with many microlensing experiments, the time-scale for variability, being of order decades to centuries, is impractically long. However, with a polarization filter oriented appropriately with respect to the path that the quasar takes across the caustic structure, the ESR diameter and radius can be estimated from the auto- and cross-correlation of polarized light curves on much shorter time-scales.Comment: 11 pages, 12 figures, 1 table, accepted for MNRA

    Spin correlations and Dzyaloshinskii-Moriya interaction in Cs2_2CuCl4_4

    Full text link
    We report on electron spin resonance (ESR) studies of the spin relaxation in Cs2_2CuCl4_4. The main source of the ESR linewidth at temperatures T≤150T \leq 150 K is attributed to the uniform Dzyaloshinskii-Moriya interaction. The vector components of the Dzyaloshinskii-Moriya interaction are determined from the angular dependence of the ESR spectra using a high-temperature approximation. Both the angular and temperature dependence of the ESR linewidth have been analyzed using a self-consistent quantum-mechanical approach. In addition analytical expressions based on a quasi-classical picture for spin fluctuations are derived, which show good agreement with the quantum-approach for temperatures T≥2J/kB≈15T \geq 2J/k_{\rm B} \approx 15 K. A small modulation of the ESR linewidth observed in the acac-plane is attributed to the anisotropic Zeeman interaction, which reflects the two magnetically nonequivalent Cu positions

    Spin dynamics of FeGa3−x_{3-x}Gex_x studied by Electron Spin Resonance

    Full text link
    The intermetallic semiconductor FeGa3_{3} acquires itinerant ferromagnetism upon electron doping by a partial replacement of Ga with Ge. We studied the electron spin resonance (ESR) of high-quality single crystals of FeGa3−x_{3-x}Gex_x for xx from 0 up to 0.162 where ferromagnetic order is observed. For x=0x = 0 we observed a well-defined ESR signal, indicating the presence of pre-formed magnetic moments in the semiconducting phase. Upon Ge doping the occurrence of itinerant magnetism clearly affects the ESR properties below ≈40\approx 40~K whereas at higher temperatures an ESR signal as seen in FeGa3_{3} prevails independent on the Ge-content. The present results show that the ESR of FeGa3−x_{3-x}Gex_x is an appropriate and direct tool to investigate the evolution of 3d-based itinerant magnetism.Comment: 12 pages, 7 figure

    The Electron Scattering Region in Seyfert Nuclei

    Get PDF
    The electron scattering region (ESR) is one of important ingredients in Seyfert nuclei because it makes possible to observe the hidden broad line region (hereafter HBLR) in some type 2 Seyfert nuclei (hereafter S2s). However, little is known about its physical and geometrical properties. Using the number ratio of S2s with and without HBLR, we investigate statistically where the ESR is in Seyfert nuclei. Our analysis suggests that the ESR is located at radius between ∼\sim 0.01 pc and ∼\sim 0.1 pc from the central engine. We also discuss a possible origin of the ESR briefly.Comment: 5 pages and 1 figure. The Astrophysical Journal (Letters), in pres

    Spin dynamics of YbRh2Si2Yb Rh_2 Si_2 observed by Electron Spin Resonance

    Full text link
    Below the Kondo temperature TKT_{\rm K} electron spin resonance (ESR) usually is not observable from the Kondo-ion itself because the characteristic spin fluctuation energy results in a huge width of the ESR line. The heavy fermion metal YbRh2_{2}Si2_{2} seems to be an exceptional case where definite ESR spectra show characteristic properties of the Kondo-ion Yb3+^{3+} well \textit{below} TKT_{\rm K}. We found that the spin dynamics of YbRh2_{2}Si2_{2}, as determined by its ESR relaxation, is spatially characterized by an anisotropy of the zero temperature residual relaxation only.Comment: Presented at NanoRes 2004, Kazan; 4 pages, 3 Figure
    • …
    corecore