1,032 research outputs found

    Computed tomography image analysis for the detection of obstructive lung diseases

    Get PDF
    Damage to the small airways resulting from direct lung injury or associated with many systemic disorders is not easy to identify. Non-invasive techniques such as chest radiography or conventional tests of lung function often cannot reveal the pathology. On Computed Tomography (CT) images, the signs suggesting the presence of obstructive airways disease are subtle, and inter- and intra-observer variability can be considerable. The goal of this research was to implement a system for the automated analysis of CT data of the lungs. Its function is to help clinicians establish a confident assessment of specific obstructive airways diseases and increase the precision of investigation of structure/function relationships. To help resolve the ambiguities of the CT scans, the main objectives of our system were to provide a functional description of the raster images, extract semi-quantitative measurements of the extent of obstructive airways disease and propose a clinical diagnosis aid using a priori knowledge of CT image features of the diseased lungs. The diagnostic process presented in this thesis involves the extraction and analysis of multiple findings. Several novel low-level computer vision feature extractors and image processing algorithms were developed for extracting the extent of the hypo-attenuated areas, textural characterisation of the lung parenchyma, and morphological description of the bronchi. The fusion of the results of these extractors was achieved with a probabilistic network combining a priori knowledge of lung pathology. Creating a CT lung phantom allowed for the initial validation of the proposed methods. Performance of the techniques was then assessed with clinical trials involving other diagnostic tests and expert chest radiologists. The results of the proposed system for diagnostic decision-support demonstrated the feasibility and importance of information fusion in medical image interpretation.Open acces

    Imaging and Treatment of Bronchiectasis:Chest computed tomography to diagnose bronchiectasis and to optimise inhalation treatment

    Get PDF
    This thesis covers image analysis of bronchiectasis and treatment with inhalation antibiotics

    Pulmonary Structure and Function in Chronic Obstructive Pulmonary Disease Evaluated using Hyperpolarized Noble Gas Magnetic Resonance Imaging

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is the 4th leading cause of death worldwide and accounts for the highest rate of hospital admissions in Canada. The need for sensitive regional and surrogate measurements of lung structure and function in COPD continues to motivate the development of non-radiation based and sensitive imaging approaches, such as hyperpolarized helium-3 (3He) and xenon-129 (129Xe) magnetic resonance imaging (MRI). The static ventilation images acquired using these approaches allows us to directly visualize lung regions accessed by the hyperpolarized gas during a breath-hold, as well as quantify the regions without signal referred to as the percentage of the thoracic cavity occupied by ventilation defects (VDP). The lung micro-structure can also be probed using diffusion-weighted imaging which takes advantage of the rapid diffusion of 3He and 129Xe atoms to generate surrogate measurements of alveolar size, referred to as the apparent diffusion coefficient (ADC). Here we evaluated COPD lung structure and function using hyperpolarized gas MRI measurements longitudinally, following treatment and in early disease. In COPD ex-smokers, we demonstrated 3He VDP and ADC worsened significantly in only 2 years although there was no change in age-matched healthy volunteers, suggestive of disease progression. We also evaluated COPD ex-smokers pre- and post-bronchodilator and showed regional improvements in gas distribution following bronchodilator therapy regardless of spirometry-based responder classification; the ADC measured in these same COPD ex-smokers also revealed significant reductions in regional gas trapping post-bronchodilator. Although 3He MRI has been more widely used, the limited global quantities necessitates the transition to hyperpolarized 129Xe, and therefore we directly compared 3He and 129Xe MRI in the same COPD ex-smokers and showed significantly greater gas distribution abnormalities for 129Xe compared to 3He MRI that were spatially and significantly related to lung regions with elevated ADC. Finally, we demonstrated that ex-smokers with normal spirometry but abnormal diffusion capacity of the lung for carbon monoxide (DLCO) had significantly worse symptoms, exercise capacity and 3He ADC than ex-smokers with normal DLCO. These important findings indicate that hyperpolarized gas MRI can be used to improve our understanding of lung structural and functional changes in COPD

    Structure and Function of Asthma Evaluated Using Pulmonary Imaging

    Get PDF
    Asthma has been understood to affect the airways in a spatially heterogeneous manner for over six decades. Computational models of the asthmatic lung have suggested that airway abnormalities are diffusely and randomly distributed throughout the lung, however these mechanisms have been challenging to measure in vivo using current clinical tools. Pulmonary structure and function are still clinically characterized by the forced expiratory volume in one-second (FEV1) – a global measurement of airflow obstruction that is unable to capture the underlying regional heterogeneity that may be responsible for symptoms and disease worsening. In contrast, pulmonary magnetic resonance imaging (MRI) provides a way to visualize and quantify regional heterogeneity in vivo, and preliminary MRI studies in patients suggest that airway abnormalities in asthma are spatially persistent and not random. Despite these disruptive results, imaging has played a limited clinical role because the etiology of ventilation heterogeneity in asthma and its long-term pattern remain poorly understood. Accordingly, the objective of this thesis was to develop a deeper understanding of the pulmonary structure and function of asthma using functional MRI in conjunction with structural computed tomography (CT) and oscillometry, to provide a foundation for imaging to guide disease phenotyping, personalized treatment and prediction of disease worsening. We first evaluated the biomechanics of ventilation heterogeneity and showed that MRI and oscillometry explained biomechanical differences between asthma and other forms of airways disease. We then evaluated the long-term spatial and temporal nature of airway and ventilation abnormalities in patients with asthma. In nonidentical twins, we observed a spatially-matched CT airway and MRI ventilation abnormality that persisted for seven-years; we estimated the probability of an identical defect occurring in time and space to be 1 in 130,000. In unrelated asthmatics, ventilation defects were spatially-persistent over 6.5-years and uniquely predicted longitudinal bronchodilator reversibility. Finally, we investigated the entire CT airway tree and showed that airways were truncated in severe asthma related to thickened airway walls and worse MRI ventilation heterogeneity. Together, these results advance our understanding of asthma as a non-random disease and support the use of MRI ventilation to guide clinical phenotyping and treatment decisions

    Cardiovascular and Thoracic Imaging: Trends, Perspectives and Prospects

    Get PDF
    Radiology is evolving at a fast pace, and the specific field of cardiovascular and thoracic imaging is no stranger to that trend. While it could, at first, seem unusual to gather these two specialties in a common Issue, the very fact that many of us are trained and exercise in both is more than a hint to the common grounds these fields are sharing. From the ever-increasing role of artificial intelligence in the reconstruction, segmentation, and analysis of images to the quest of functionality derived from anatomy, their interplay is big, and one innovation developed with the former in mind could prove useful for the latter. If the coronavirus disease 2019 (COVID-19) pandemic has shed light on the decisive diagnostic role of chest CT and, to a lesser extent, cardiac MR, one must not forget the major advances and extensive researches made possible in other areas by these techniques in the past years. With this Issue, we aim at encouraging and wish to bring to light state-of-the-art reviews, novel original researches, and ongoing discussions on the multiple aspects of cardiovascular and chest imaging

    Analysis of Respiratory Sounds: State of the Art

    Get PDF
    Objective This paper describes state of the art, scientific publications and ongoing research related to the methods of analysis of respiratory sounds. Methods and material Review of the current medical and technological literature using Pubmed and personal experience. Results The study includes a description of the various techniques that are being used to collect auscultation sounds, a physical description of known pathologic sounds for which automatic detection tools were developed. Modern tools are based on artificial intelligence and on technics such as artificial neural networks, fuzzy systems, and genetic algorithms
 Conclusion The next step will consist in finding new markers so as to increase the efficiency of decision aid algorithms and tools

    Texture Analysis and Machine Learning to Predict Pulmonary Ventilation from Thoracic Computed Tomography

    Get PDF
    Chronic obstructive pulmonary disease (COPD) leads to persistent airflow limitation, causing a large burden to patients and the health care system. Thoracic CT provides an opportunity to observe the structural pathophysiology of COPD, whereas hyperpolarized gas MRI provides images of the consequential ventilation heterogeneity. However, hyperpolarized gas MRI is currently limited to research centres, due to the high cost of gas and polarization equipment. Therefore, I developed a pipeline using texture analysis and machine learning methods to create predicted ventilation maps based on non-contrast enhanced, single-volume thoracic CT. In a COPD cohort, predicted ventilation maps were qualitatively and quantitatively related to ground-truth MRI ventilation, and both maps were related to important patient lung function and quality-of-life measures. This study is the first to demonstrate the feasibility of predicting hyperpolarized MRI-based ventilation from single-volume, breath-hold thoracic CT, which has potential to translate pulmonary ventilation information to widely available thoracic CT imaging

    Identification and quantification of the alveolar compartment by confocal laser endomicroscopy in patients with interstitial lung diseases

    Get PDF
    Tese de mestrado integrado, Engenharia BiomĂ©dica e BiofĂ­sica (BiofĂ­sica MĂ©dica e Fisiologia de Sistemas), Universidade de Lisboa, Faculdade de CiĂȘncias, 2018Doenças Intersticiais Pulmonares (DIP) Ă© um termo que inclui mais de 200 doenças que afectam o parĂȘnquima pulmonar, partilhando manifestaçÔes clĂ­nicas, radiogrĂĄficas e patolĂłgicas semelhantes. Este conjunto de doenças Ă© bastante heterogĂ©neo, apresentando cada tipo de DIP em diferente grau os elementos de inflamação e fibrose: enquanto a inflamação Ă© reflectida pelo aumento de cĂ©lulas inflamatĂłrias e presença de nĂłdulos ou edema, a fibrose reflecte-se pelas fibras adicionais de colagĂ©nio e elastina. Identificar o tipo de DIP de um doente Ă© um processo difĂ­cil, sendo a DiscussĂŁo Multidisciplinar o actual mĂ©todo de diagnĂłstico "gold standard": vĂĄrios mĂ©dicos especialistas compĂ”em uma equipa multidisciplinar que vai ter em conta os dados clĂ­nicos, radiolĂłgicos e patolĂłgicos disponĂ­veis para chegar a uma conclusĂŁo. Estes dados incluem imagens de tomografia computorizada de alta resolução (TCAR), a descrição da lavagem broncoalveolar e, quando possĂ­vel, dados de biĂłpsias. Apesar do esforço e competĂȘncia da equipa multidisciplinar, 10% dos pacientes sĂŁo categorizados como inclassificĂĄveis devido a dados inadequados ou discrepĂąncia entre os dados existentes. A maior causa para DIP inclassificĂĄveis Ă© a ausĂȘncia de dados histopatolĂłgicos associada aos riscos das biĂłpsias cirĂșrgicas. É muito importante determinar a DIP especĂ­fica de um doente, dadas as suas implicaçÔes no tratamento e gestĂŁo do mesmo. É particularmente crĂ­tica a distinção entre doentes com Fibrose Pulmonar IdiopĂĄtica (FPI) e doentes sem FPI, dado que hĂĄ terapias anti-fibrĂłticas – como o Pirfenidone – indicadas para FPI que sĂŁo extremamente dispendiosas, exigindo certeza no diagnĂłstico antes de serem prescritas. AlĂ©m disso, o tratamento com agentes imunossupressores pode funcionar com o grupo dos nĂŁo-FPI mas aumenta a morte e hospitalizaçÔes nos doentes com FPI. A discussĂŁo multidisciplinar pode beneficiar da informação adicional oferecida pelo Confocal Laser Endomicroscopy (CLE), uma tĂ©cnica de imagiologia que torna possĂ­vel visualizar os alvĂ©olos pulmonares com resolução microscĂłpica de forma minimamente invasiva, atravĂ©s de uma broncoscopia. O laser do CLE tem um comprimento de onda de 488 nm que permite observar a autofluorescĂȘncia das fibras de elastina. HĂĄ evidĂȘncias de que a quantidade de fibras de elastina Ă© aumentada e a arquitectura destas fibras Ă© alterada na presença de fibrose pulmonar, a qual estĂĄ associada a algumas doenças intersticiais pulmonares incluindo a fibrose pulmonar idiopĂĄtica. AtĂ© Ă  data, os vĂ­deos de Confocal Laser Endomicroscopy sĂŁo, na maioria dos casos, analisados apenas visualmente, e pouca informação objectiva e consistente foi conseguida destes vĂ­deos em doentes de DIP. No entanto, Ă© possĂ­vel obter informação mais relevante dos mesmos, convertendo-os em frames, prĂ©-processando as imagens e extraindo atributos numĂ©ricos. Neste projecto, foram obtidas imagens dos alvĂ©olos pulmonares de doentes de DIP atravĂ©s de CLE. O principal objectivo do projecto Ă© melhorar a tĂ©cnica de CLE e aumentar a sua usabilidade para que no futuro possa contribuir para facilitar a estratificação de doentes com DIP e eventualmente reduzir o nĂșmero de biĂłpsias pulmonares nestes doentes. Como mencionado, o instrumento de Confocal Laser Endomicroscopy emite uma luz laser azul de 488nm, a qual Ă© reflectida no tecido e reorientada para o sistema de detecção pela mesma lente, passando por um pequeno orifĂ­cio (pinhole). Isto permite que a luz focada seja recolhida e que feixes provenientes de planos fora de foco sejam excluĂ­dos, originando uma resolução microscĂłpica que permite imagens ao nĂ­vel celular. Quando o CLE Ă© aplicado a imagem pulmonar, Ă© possĂ­vel observar as paredes alveolares pela autofluorescĂȘncia natural presente nas fibras de elastina. No estudo clĂ­nico subjacente a este estudo, o protocolo de CLE foi aplicado a 20 pacientes, embora 8 tenham sido posteriormente excluĂ­dos da anĂĄlise. Os vĂ­deos de CLE obtidos sofreram duas selecçÔes: uma com base na regiĂŁo onde uma biĂłpsia (usada como referĂȘncia) foi tirada e outra com base na qualidade tĂ©cnica das imagens. Depois, os dados foram prĂ©-processados: geraram-se imagens mosaico com um campo de visĂŁo alargado e, paralelamente converteram-se as sequĂȘncias de vĂ­deo em frames. A qualidade da imagem foi melhorada, filtrando o ruĂ­do electrĂłnico para que posteriormente pudesse ser aplicada a anĂĄlise de imagem. Esta anĂĄlise extraiu valores numĂ©ricos que reflectem o estado do espaço alveolar, nomeadamente, variĂĄveis de textura e mediçÔes relacionadas com as fibras de elastina. As imagens de CLE obtidas mostraram-se muito interessantes. A resolução Ă© superior Ă  tomografia computorizada de alta resolução e a tridimensionalidade acrescenta informação Ă s biĂłpsias. O facto de permitir feedback em tempo real e observar ao vivo os movimentos naturais da respiração contribui para a anĂĄlise do estado do doente. A anĂĄlise de textura feita Ă s imagens serviu-se de um algoritmo de extracção de variĂĄveis de Haralick a partir de uma Gray-Level Co-occurence Matrix (GLCM). Foram extraĂ­das as variĂĄveis de textura Momento Angular SecundĂĄrio (Energia), Entropia, Momento de Diferença Inversa, Contraste, Variação e Correlação. O algoritmo de Ridge Detection (detecção de linhas) identificou a maior parte das fibras de elastina detectĂĄveis por um observador humano e mediu o NĂșmero de Fibras, o seu Comprimento e Largura e o NĂșmero de JunçÔes entre fibras, permitindo tambĂ©m calcular a Soma dos Comprimentos de todas as fibras. Estes algoritmos devolveram valores consistentes num processo mais eficiente comparado com um observador humano, conseguindo avaliar em poucos segundos mĂșltiplas variĂĄveis para todo o conjunto de dados. As mediçÔes relacionadas com as fibras de elastina pretendiam ajudar a identificar os doentes fibrĂłticos. Era esperado que as fibras dos doentes fibrĂłticos fossem mais largas, mas isso nĂŁo se observou. TambĂ©m se previa que este grupo de doentes apresentasse maior nĂșmero de fibras e junçÔes, mas nĂŁo houve uma diferença significativa entre grupos. No entanto, quando o grupo fibrĂłtico foi segregado, o nĂșmero de fibras e junçÔes parece separar a fibrose moderada da fibrose severa. Este resultado Ă© interessante na medida em que sugere que a monitorização do nĂșmero de fibras/junçÔes com CLE pode potencialmente ser usado como medida de eficĂĄcia de medicação anti-fibrĂłtica. Em relação Ă s variĂĄveis de textura, esperava-se que os doentes fibrĂłticos apresentassem valores mais elevados de Entropia, Contraste e VariĂąncia e valores inferiores de Momento de Diferença Inversa, dado que o seu tecido pulmonar deveria corresponder a imagens mais complexas e heterogĂ©neas com mais arestas presentes. No entanto, ainda nĂŁo foi possĂ­vel estabelecer diferenças significativas entre grupos. Apesar dos resultados com o conjunto de dados usado nĂŁo ter demonstrado correlaçÔes fortes entre as conclusĂ”es do CLE e da TCAR/histopatologia, os valores das variĂĄveis em si jĂĄ contribuem para o estudo das DIP, nomeadamente da sua fisiologia. De facto, a amostra de doentes deste estudo era reduzida, mas com uma amostra maior, espera-se que algumas das varĂĄveis se correlacionem com outras tĂ©cnicas usadas no diagnĂłstico e permitam segregar os pacientes em grupos e eventualmente aplicar classificação de dados. Neste momento, Ă© possĂ­vel especular que algumas variĂĄveis seriam melhores candidatas para um classificador, nomeadamente os NĂșmeros de Fibras e JunçÔes, a Soma dos Comprimentos das fibras e as variĂĄveis de Haralick Entropia e Energia. O projecto apresentado nesta dissertação foi desenvolvido atravĂ©s de um estĂĄgio de 6 meses no departamento de Pneumologia no Academic Medical Center em AmsterdĂŁo, PaĂ­ses Baixos. No Academic Medical Center (AMC), fui acompanhada pelos estudantes de doutoramento Lizzy Wijmans - mĂ©dica - e Paul Brinkman - engenheiro biomĂ©dico - e supervisionada pelo Dr. Jouke Annema, MD, PhD, Professor de endoscopia pulmonar. Este grupo de investigação do AMC estĂĄ focado em tĂ©cnicas inovadoras de imagiologia do sistema pulmonar e teve a oportunidade de reunir com a empresa MKT –que produz a tecnologia de Confocal Laser Endomicroscopy –, o que enriqueceu a discussĂŁo aqui apresentada. Do Departamento de FĂ­sica da Faculdade de CiĂȘncias da Universidade de Lisboa, fui orientada pelo Prof. Nuno Matela.Interstitial Lung Diseases (ILD) is a heterogeneous group of more than 200 diseases which affect the lung parenchyma. To identify the type of ILD a patient suffers from is a difficult process, and 10% of the patients are categorized as unclassifiable, mostly due to the absence of histopathological data associated with the risks of lung biopsies. The patient specific diagnosis is important because of its implications to the patient treatment and management, being particularly relevant to identify lung fibrosis. The Confocal Laser Endomicroscopy (CLE) can add information to this process. CLE allows to image the lung tissue with a micrometer resolution in a minimally invasive way, through a bronchoscopy. The elastin fibers from the lung alveoli are visible with this technique due to their autofluorescence. Since there is evidence that the amount of elastin fibers increases, and their architecture is altered in lung fibrosis, CLE should be used to extract values reflecting this condition. Thus, the main goal of this project was to improve the CLE technique and increase its usability, by extracting numerical values from the images which would reflect the state of the alveolar space, particularly the elastin fibers. The ILD patients recruited for the study had their lung alveoli imaged with CLE. The CLE movies were selected, pre-processed – were converted into frames, had their image quality enhanced and some mosaics were obtained – and then analyzed. The ridge detection algorithm detected most fibers recognized by a human observer. It allowed the measurement of the Number of Detected Fibers, their Length and Width, the Number of Junctions between fibers and to calculate the Sum from all Fibers’ Lengths. The Gray-Level Co-occurrence Matrix allowed the extraction of the Haralick texture features: Angular Second Moment (Energy), Entropy, Inverse Difference Moment, Contrast, Variance and Correlation. These algorithms produced consistent and unbiased numerical features, in an efficient process which can analyze the entire data set in a few seconds. Regarding the fiber related measurements, it was expected for the fibrotic patients to have wider fibers and a higher number of fibers and junctions. In terms of texture variables, it was expected from the fibrotic patients to present higher values of Entropy, Contrast and Variance, and lower values of Inverse Difference Moment, given their lung tissue should correspond to more complex and heterogeneous images with more ridges present. Due to the small sample size, it was still not possible to stratify patients with this data set. Nevertheless, the measurements presented here already contribute to the study of ILD, helping to understand the disease physiology. It is hoped that in the future, these measurements will aid the diagnosis process specially in those cases when patients cannot undergo a surgical biopsy. Additionally, CLE could potentially be used as an anti-fibrotic medication efficiency measurement tool
    • 

    corecore