2 research outputs found

    Efficient implementation of partitioned stiff exponential Runge-Kutta methods

    Full text link
    Multiphysics systems are driven by multiple processes acting simultaneously, and their simulation leads to partitioned systems of differential equations. This paper studies the solution of partitioned systems of differential equations using exponential Runge-Kutta methods. We propose specific multiphysics implementations of exponential Runge-Kutta methods satisfying stiff order conditions that were developed in [Hochbruck et al., SISC, 1998] and [Luan and Osterman, JCAM, 2014]. We reformulate stiffly--accurate exponential Runge--Kutta methods in a way that naturally allows of the structure of multiphysics systems, and discuss their application to both component and additively partitioned systems. The resulting partitioned exponential methods only compute matrix functions of the Jacobians of individual components, rather than the Jacobian of the full, coupled system. We derive modified formulations of particular methods of order two, three and four, and apply them to solve a partitioned reaction-diffusion problem. The proposed methods retain full order for several partitionings of the discretized problem, including by components and by physical processes

    Partitioned Exponential Methods for Coupled Multiphysics Systems

    Full text link
    Multiphysics problems involving two or more coupled physical phenomena are ubiquitous in science and engineering. This work develops a new partitioned exponential approach for the time integration of multiphysics problems. After a possible semi-discretization in space, the class of problems under consideration is modeled by a system of ordinary differential equations where the right-hand side is a summation of two component functions, each corresponding to a given set of physical processes. The partitioned-exponential methods proposed herein evolve each component of the system via an exponential integrator, and information between partitions is exchanged via coupling terms. The traditional approach to constructing exponential methods, based on the variation-of-constants formula, is not directly applicable to partitioned systems. Rather, our approach to developing new partitioned-exponential families is based on a general-structure additive formulation of the schemes. Two method formulations are considered, one based on a linear-nonlinear splitting of the right hand component functions, and another based on approximate Jacobians. The paper develops classical (non-stiff) order conditions theory for partitioned exponential schemes based on particular families of T-trees and B-series theory. Several practical methods of third order are constructed that extend the Rosenbrock-type and EPIRK families of exponential integrators. Several implementation optimizations specific to the application of these methods to reaction-diffusion systems are also discussed. Numerical experiments reveal that the new partitioned-exponential methods can perform better than traditional unpartitioned exponential methods on some problems.Comment: Fixed a definition and other minor typos. Results remain unchange
    corecore