295 research outputs found

    Esquemas de pré-codificação IA com IB-DFE para sistemas MC-CDMA

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesTo achieve high bit rates, needed to meet the quality of service requirements of future multimedia applications, multi-carrier code division multiple access (MC-CDMA) has been considered as a candidate air-interface. Interference alignment (IA) is a promising technique that allows high capacity gains in interfering channels. On the other hand, iterative block decision feedback equalization (IB-DFE) based receivers can efficiently exploit the inherent space-frequency diversity of the MIMO MC-CDMA systems. In this thesis we proposed an IA precoding at the transmitter with IB-DFE based processing at the receiver for MC-CDMA systems. The IA precoding is applied at chip level instead of the data symbols level, as in the conventional IA based systems. The receiver is designed in two steps: first the equalizers based on zero forcing (ZF) or minimum mean square error (MMSE) are used to remove the aligned users´ interference. Then and after a whitening noise process, an IB-DFE based equalizer is designed to remove both the residual inter-user aligned and inter-carrier interferences. The results have shown that the obtained performance is very close to the one obtained by the optimal matched filter, with few iterations at the receiver side.Para atingir maiores ritmos de transmissão, as futures aplicações multimédia necessitam de atingir a qualidade de serviço necessária. Para isso, o multi-carrier code division multiple access (MC-CDMA) tem sido apontado como um forte candidato para interface ar dos futuros sistemas celulares. O Interference Alignment (IA) ou alinhamento de interferência é uma técnica promissora que permite ter altos ganhos de capacidade em canais com interferência. Por outro lado, temos receptores baseados no conceito iterative block decision feedback equalization(IB-DFE) que conseguem tirar partido, de uma forma eficiente, da inerente diversidade espaço-frequência dos sistemas MIMO MC-CDMA. Nesta dissertação é implementada uma pré-codificação baseada no conceito de IA considerando três transmissores (ou estações base) juntamente, com um processamento IB-DFE no receptor para sistemas MC-CDMA.A pré-codificação é aplicada ao nível de chip em vez de ser aplicado ao nível dos dados. O receptor é projectado em dois passos: em primeiro lugar equalizadores baseados em ZF ou em MMSE são utilizados para remover a interferência alinhada dos restantes utilizadores. De seguida, e após aplicar um processo de branqueamento do ruído ao sinal à saída do primeiro equalizador, um segundo equalizador baseado em IB-DFE é projectado para remover a interferência inter-utilizador residual e também a interferência residual entre portadoras. Os resultados obtidos mostraram-se satisfatórios na remoção da interferência obtendo-se um desempenho muito próximo do obtido considerando um filtro adaptado

    Linearisation, error correction coding and equalisation for multi-level modulation schemes

    Full text link
    University of Technology, Sydney. Faculty of Engineering.Orthogonal frequency division multiplexing (OFDM) has been standardised for digital audio broadcasting (DAB), digital video broadcasting (DVB) and wireless local area networks (WLAN). OFDM systems are capable of effectively coping with frequency- selective fading without using complex equalisation structures. The modulation and demodulation processes using fast fourier transform (FFT) and its inverse (IFFT) can be implemented very efficiently. More recently, multicarrier code division multiple access (MC-CDMA) based on the combination of OFDM and conventional CDMA has received growing attention in the field of wireless personal communication and digital multimedia broadcasting. It can cope with channel frequency selectivity due to its own capabilities of overcoming the asynchronous nature of multimedia data traffic and higher capacity over conventional multiple access techniques. On the other hand, multicarrier modulation schemes are based on the transmission of a given set of signals on large numbers of orthogonal subcarriers. Due to the fact that the multicarrier modulated (MCM) signal is a superposition of many amplitude modulated sinusoids, its probability density function is nearly Gaussian. Therefore, the MCM signal is characterised by a very high peak-to-average power ratio (PAPR). As a result of the high PAPR, the MCM signal is severely distorted when a nonlinear high power amplifier (HPA) is employed to obtain sufficient transmitting power. This is very common in most communication systems, and decreases the performance significantly. The simplest way to avoid the nonlinear distortion is substantial output backoff (OBO) operating in the linear region of the HPA. However, because of the high OBO, the peak transmit power has to be decreased. For this reason, many linearisation techniques have been proposed to compensate for the nonlinearity without applying high OBO. The predistortion techniques have been known and studied as one of the most promising means to solve the problem. In this thesis, an improved memory mapping predistortion technique devised to reduce the large computational complexity of a fixed point iterative (FPI) predistorter is proposed, suitable especially for multicarrier modulation schemes. The proposed memory mapping predistortion technique is further extended to compensate for nonlinear distortion with memory caused by a shaping linear filter. The case of varying HPA characteristics is also considered by using an adaptive memory mapping predistorter which updates the lookup table (LUT) and counteracts these variations. Finally, an amplitude memory mapping predistorter is presented to reduce the LUT size. Channel coding techniques have been widely used as an effective solution against channel fading in wireless environments. Amongst these, particular attention has been paid to turbo codes due to their performance being close to the Shannon limit. In-depth study and evaluation of turbo coding has been carried out for constant envelope signaling systems such as BPSK, QPSK and M-ary PSK. In this thesis, the performance of TTCM-OFDM systems with high-order modulation schemes, e.g. 16-QAM and 64-QAM, is investigated and compared with conventional channel coding schemes such as Reed-Solomon and convolutional coding. The analysis is performed in terms of spectral efficiency over a multipath fading channel and in presence of an HPA. Maximum a-priori probability (MAP), soft output Viterbi algorithm (SOVA) and pragmatic algorithms are compared for non-binary turbo decoding with these systems. For this setup, iterative multiuser detection in TTCM/MC-CDMA systems with M-QAM is introduced and investigated, adopting a set of random codes to decrease the PAPR. As another application of TTCM, the performance of multicode CDMA systems with TTCM for outer coding over multipath fading channels is investigated

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Cyclic Prefix-Free MC-CDMA Arrayed MIMO Communication Systems

    No full text
    The objective of this thesis is to investigate MC-CDMA MIMO systems where the antenna array geometry is taken into consideration. In most MC-CDMA systems, cyclic pre xes, which reduce the spectral e¢ ciency, are used. In order to improve the spectral efficiency, this research study is focused on cyclic pre x- free MC-CDMA MIMO architectures. Initially, space-time wireless channel models are developed by considering the spatio-temporal mechanisms of the radio channel, such as multipath propaga- tion. The spatio-temporal channel models are based on the concept of the array manifold vector, which enables the parametric modelling of the channel. The array manifold vector is extended to the multi-carrier space-time array (MC-STAR) manifold matrix which enables the use of spatio-temporal signal processing techniques. Based on the modelling, a new cyclic pre x-free MC- CDMA arrayed MIMO communication system is proposed and its performance is compared with a representative existing system. Furthermore, a MUSIC-type algorithm is then developed for the estimation of the channel parameters of the received signal. This proposed cyclic pre x-free MC-CDMA arrayed MIMO system is then extended to consider the effects of spatial diffusion in the wireless channel. Spatial diffusion is an important channel impairment which is often ignored and the failure to consider such effects leads to less than satisfactory performance. A subspace-based approach is proposed for the estimation of the channel parameters and spatial spread and reception of the desired signal. Finally, the problem of joint optimization of the transmit and receive beam- forming weights in the downlink of a cyclic pre x-free MC-CDMA arrayed MIMO communication system is investigated. A subcarrier-cooperative approach is used for the transmit beamforming so that there is greater flexibility in the allocation of channel symbols. The resulting optimization problem, with a per-antenna transmit power constraint, is solved by the Lagrange multiplier method and an iterative algorithm is proposed

    Implementation of a Combined OFDM-Demodulation and WCDMA-Equalization Module

    Get PDF
    For a dual-mode baseband receiver for the OFDMWireless LAN andWCDMA standards, integration of the demodulation and equalization tasks on a dedicated hardware module has been investigated. For OFDM demodulation, an FFT algorithm based on cascaded twiddle factor decomposition has been selected. This type of algorithm combines high spatial and temporal regularity in the FFT data-flow graphs with a minimal number of computations. A frequency-domain algorithm based on a circulant channel approximation has been selected for WCDMA equalization. It has good performance, low hardware complexity and a low number of computations. Its main advantage is the reuse of the FFT kernel, which contributes to the integration of both tasks. The demodulation and equalization module has been described at the register transfer level with the in-house developed Arx language. The core of the module is a pipelined radix-23 butterfly combined with a complex multiplier and complex divider. The module has an area of 0.447 mm2 in 0.18 ¿m technology and a power consumption of 10.6 mW. The proposed module compares favorably with solutions reported in literature

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions
    corecore