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This study proposes an iterative, joint channel estimation, equalization, and data detection method in the presence of high mobility
for a multicarrier downlink system that communicates over rapidly time-varying channels. The proposed method uses a basis
expansion method (BEM) which has low computational complexity and helps to reduce the number of coefficients needed to
represent a time-varying channel and therefore is extremely easy to implement practically. Unlike the current literature, which
is almost entirely focused on the uplink communication systems due to their computational costs, this method prioritizes the
goal of being feasible in a downlink system with a reasonable performance. The proposed suboptimal algorithm is based on
the space-alternating generalized expectation-maximization (SAGE) algorithm and the time-varying channel is represented by
orthogonal basis functions obtained by means of discrete Walsh-Hadamard transform (DWHT). The resulting receiver iterates
between maximum a posteriori (MAP) based channel estimation in the subspace spanned by the orthogonal basis functions and
successive interference cancellation. Numerical examples show that the proposed algorithm has a satisfactory symbol error rate
with low computational complexity and also has a reasonable peak-to-average power ratio (PAPR) reduction effect.

1. Introduction

1.1. Motivation and Previous Works. Multicarrier code divi-
sion multiple access (MC-CDMA) combines the advantages
of orthogonal frequency division multiplexing (OFDM) with
code division multiple access (CDMA), especially partition-
ing the channel bandwidth into a series of parallel orthogonal
subchannels. Thus, it turns frequency selective channel into
a flat channel with one subcarrier. Each user’s original data
stream is spread across all subchannels by means of users’
unique spreading codes in the frequency domain that sep-
arate users from each other. MC-CDMA thus provides fre-
quency diversity and multiple access capability. This makes
the MC-CDMA be a good candidate for these types of sys-
tems as well as OFDM. In the last two decades, the MC-
CDMA technique has been a powerful alternative to conven-
tional modulation techniques for downlink systems since its
spectral efficiency is high and its receiver complexity is low
[1]. Today, it is still preferred as a popular multiple access

technique for next generation wireless communication sys-
tems [2–5]. In multicarrier systems, if the symbol duration is
smaller than the channel delay, multipath propagation causes
serious multiple access interference (MAI) and intersym-
bol interference (ISI). The effects of MAI can be partially
removed by using orthogonal codes, but it is not possible
to completely remove it because of the deterioration on the
orthogonality of the user codes and time delays. The adverse
effects of MAI can be further reduced using estimates of all
active users’ data and channel coefficients. With this moti-
vation, researchers studied iterative parallel interference
canceller- (PIC-) based multiuser data detection techniques
for CDMA-based systems to enhance their performance [6–
11]. That is why maximum likelihood (ML) based algo-
rithms such as expectation-maximization (EM) and space-
alternating generalized expectation-maximization (SAGE)
are preferred [11–14]. Although ML type algorithms are able
to collectively estimate data and channel coefficients, they
have computational complexity and slowness problem. To
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this end, these algorithmsweremostly usedin theuplink com-
munication of multicarrier systems in [9–12] and rarely in
downlink communication systems for data detection, chan-
nel estimation, beamforming, and direction of arrival esti-
mation with a cost of high computational complexity [14–
19]. Despite high computational complexity, some of these
studies show that jointly estimate of channel coefficients and
user’s data is a good alternative for the downlink communi-
cation of MC-CDMA system to improve the performance.
Consequently, the joint data and channel estimation can be
considered in downlinkMC-CDMAsystems to decrease com-
putational complexity.

In order to meet the high data rate requirement of next
generation communication systems,multicarriermodulation
methods have become more attractive lately. Because the
IEEE 802.11 standard series cannot perform satisfactorily
for outdoor broadband wireless communications, the IEEE
802.16m standard has been developed to address this need.
As mobility is a very important issue in wireless environ-
ments, the studies on the channel estimation or/and the data
detection for time-varying fading channels were considered
in [13, 20–24]. Reference [13] presents a suboptimal receiver
for OFDM systems where mobility is very high. It exploits
discrete cosine transform (DCT) as basis expansion model
instead of usingwhole channel and it has a remarkable perfor-
mance. However, the computational complexity is still high.
In [20], frequency shifted discrete prolate spheroidal (DPS)
sequences are exploited to get an iterative time-variant chan-
nel estimator which does not need the detailed autocorrela-
tion function of the channel. The proposed method in [21] is
capable of controlling error propagation robustly and detect-
ing and tracking abrupt channel changes effectively. Refer-
ence [22] proposes an iterative SAGE algorithm to jointly esti-
mate the channel and data by using DPS sequences in time-
varying flat-fading channels and [23] deals with estimation of
rapidly time-varying Rayleigh fading channels. Specifically,
it proposes a high order autoregressive (AR) model to track
the channel, but it requires high computational cost when
AR model order increases. The method in [24] proposes a
time-frequency based channel estimator for MIMO-OFDM
systems. In that paper, discrete evolutionary transformation is
exploited to estimate doubly selective channel, but it has very
high computational cost.

Since mobility is still important for the next generation
systems aswell as the current generation systems, BEM-based
studies are still being carried out by many researchers. Some
of the most remarkable of these studies can be found in
[25–28]. Reference [25] presents an iterative receiver which
uses two tolls: block-sparse-Bayesian learning and mean-
field belief-propagation. The method has a satisfactory per-
formance to estimate the delays, and their receiver performs
almost excellently, but computational complexity of it is still
an important problem since it uses a Bayesian based method.
In [26], authors propose a channel estimation method using
polynomial basis expansionmethod. It adaptively chooses the
delay grid and iteratively estimates each path delay and then
estimates path gains. Compared with the previous methods,
it has much lower computational complexity as well as a
comparable performance. In [27], a massive multiple-input

multiple-output (MIMO) system with equipped antenna
array is considered under the assumption of time-selective
flat-fading channel. It presents a discrete Fourier transform
based spatial-temporal basis expansion model to reduce
number of channel coefficients.The remarkable aspect of this
work is that the method can be applied to both FDD and
TDD based massive MIMO systems, but its performance is
severely affected since this method induces a large edge error
and brings about the Gibbs phenomenon. In [28], authors
investigate the performance of complex exponential BEM,
generalized complex exponential BEM, and polynomial BEM
while estimating the fast time-varying channel for a long term
evolution for the railway system.

1.2. General Framework of Contributions. As can be seen
above, all the aforementioned studies have considered detec-
tion and estimation methods for uplink communication
systems due to high computational complexity. To the best
of authors’ knowledge, there is not any BEM-based study
addressing the joint channel estimation, data detection, and
equalization for downlink communication. Motivated above,
in this paper, a low computational complexity SAGE-based
iterative algorithm is proposed for downlink MC-CDMA
system.The proposed method is capable of jointly estimating
users’ data and channel coefficients of rapidly time-varying
and frequency selective channel. In order to represent time-
varying fading channel low-dimensionally, basis function is
obtained via DWHT. Instead of the channel coefficients,
resulting low dimensional representations of them are esti-
mated and then data symbols are detected iteratively with
a reasonable computational complexity for the mobile user
equipment.This is becauseDWHTneeds simple addition and
subtraction without the scaling factor. Hence, it is exploited
in situations where the low computational burden is needed.
Moreover, energy compaction rate of DWHT is at a reason-
able level. Computer simulations show that DWHT shows a
satisfactory performance in terms of symbol error rate.

Peak-to-average power ratio (PAPR) is one of the chal-
lenging issues in OFDM based systems. High PAPR force the
high power amplifier to operate in its linear region with wide
dynamic range, where the power efficiency is very poor. The
poor power efficiency makes the reduction of PAPR more
important in OFDM systems. In order to reduce this effect,
variousmethods such as selectedmapping,hierarchicalQAM,
wavelet transform, Karhunen-Loeve Transform, WHT, and
double WHT have been proposed in [29–34]. Particularly,
the studies using WHT in [33, 34] have attracted attention
because of their superior performance. With this motivation,
we investigate whether our proposed DWHT based method
has any effect on reducing the PAPR.

1.3. Organization of the Paper and Notations. This paper is
organized as follows. In Section 2, signal model of downlink
MC-CDMA system for rapidly time-varying and frequency
selective fading channels is described. Section 3 presents a
suboptimal receiver consisting of a channel estimator and
data detector with interference cancellation. Computer simu-
lations are presented in Section 4. Finally, Section 5 concludes
the paper.
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Notation 1. (⋅)−1, (⋅)𝑇, (⋅)𝐻, trc[⋅], ⊗, and R(⋅) denote matrix
inversion, transpose, conjugate transpose, trace, Kronecker
product, and real part of its argument, respectively. Vectors
(matrices) are denoted by boldface lower (upper) case letters;
all vectors are column vectors. I𝑁 represents the 𝑁 × 𝑁
identity matrix and 1𝑁 is𝑁×1 vector each element of which
is 1.
2. Signal Model

This study considers a synchronous downlink MC-CDMA
system in which there are a simultaneously active 𝐾 number
of users. Each user has a preassigned spreading code with
length 𝑃. It is considered that the number of subcarriers𝑁 is
equal to𝑃. In this system, each active user’s data is first spread
with its own unique codes, and then each chip of spread
data symbol is mapped onto a different subcarrier. After the
processes of mapping, P/S conversion, and cyclic prefix (CP)
insertion, the obtained signal is transmitted through a time-
varying and frequency selective fading channel. Discrete-
time impulse response of the channel can be defined as𝑐(𝑚, 𝑠) = ∑𝑆𝑠=1 𝑔𝑠(𝑚)𝛿(𝑡 − 𝜏𝑠(𝑚)), 𝑠 = 0, 1, . . . , 𝑆 − 1, 𝑚 =0, 1, . . . ,𝑀 − 1, where 𝑆 is the maximum channel length and𝑀 is the length of oneMC-CDMA frame, respectively; 𝑔𝑠(𝑚)
and 𝜏𝑠(𝑚) are time-varying complex fading coefficient and
delay of the 𝑠-th path, respectively. The channel vector is
defined as g(𝑚) = [g𝑇0 (𝑚), g𝑇1 (𝑚), . . . , g𝑇𝑆−1(𝑚)]𝑇 ∈ C𝑁𝑆×1,
where g𝑠(𝑚) = [𝑔𝑠(0), 𝑔𝑠(1), . . . , 𝑔𝑠(𝑁 − 1)]𝑇 represents
WSSUS Rayleigh fading coefficients of 𝑠-th path at 𝑚-th
discrete-time. According to Jake’s model, the autocorrelation
function of the channel is

𝑅𝑔𝑠 (𝑚 − 𝑚󸀠, 𝑠 − 𝑠󸀠)
= 𝜎2𝑔𝑠𝐽0 (2𝜋𝑓𝐷𝑇𝑠 (𝑚 − 𝑚󸀠)) 𝛿 (𝑠 − 𝑠󸀠) , (1)

where 𝜎2𝑔𝑠 denotes the normalized power of the channel
coefficients of the 𝑠-th path. 𝑓𝐷 is the Doppler frequency in
Hertz so that the term 𝑓𝐷𝑇𝑠 represents normalized Doppler
frequency where 𝑇𝑠 is sampling duration. As long as 𝑓𝐷𝑇𝑠 is
sufficiently small, impulse response of the time-varying chan-
nel can be regarded as constant throughout an MC-CDMA
frame. 𝐽0(⋅) is the zeroth-order Bessel function of the first
kind.

After the sampling of the signal received by the 𝑘-th
mobile unit at an adequate rate and S/P conversion, CP is
removed. Later, the obtained discrete-time signal is demod-
ulated by using DFT. Finally, the resulting signal for 𝑚-th
symbol at the output of 𝑘-th mobile user’s matched filter can
be written as [14]

𝑦 (𝑚) = 𝐾∑
𝑛=1

𝑏𝑛 (𝑚)𝜌𝑛𝑘F (𝑚) g (𝑚) + 𝑤 (𝑚) , (2)

where 𝑏𝑛(𝑚) is 𝑚-th symbol of 𝑛-th user; 𝜌𝑛𝑘 is the cross
correlation among user’s spreading codes with length 𝑁,
which is 𝜌𝑛𝑘 = [1, 1, . . . , 1] ∈ R1×𝑁 when 𝑛 = 𝑘; F(𝑚) =
1𝑇𝑁 ⊗ F̃ ∈ C𝑁×𝑁𝑆 is the Fourier transform matrix for 𝑚-th

symbol where F̃ ∈ C𝑁×𝑆 is with the (𝑛, 𝑠)-th element given
by 𝑒−2𝜋𝑝𝜏𝑠(𝑚)/𝑁; and 𝑤(𝑚) is distributed asN(0, 𝜎2/𝑁). After
fewmanipulations, (2) can bewritten in amore compact form
including all𝑀 number of symbols in a frame as follows:

y = Qg + w. (3)

Here, y = [𝑦(0), 𝑦(1), . . . , 𝑦(𝑀 − 1)]𝑇 ∈ C𝑀×1 is the signal
vector obtained from output of 𝑘-th active user’s matched
filter, Q = ∑𝐾𝑛=1Q𝑛𝑘, where Q𝑛𝑘 = diag(b𝑛)A𝑛 ∈ C𝑀×𝑀𝑁𝑆 for
A𝑛 = I𝑀 ⊗ 𝜌𝑛𝑘F(𝑚) ∈ C𝑀×𝑀𝑁𝑆 and b𝑛 = [𝑏𝑛(1), . . . , 𝑏𝑛(𝑀)]𝑇,
and w = [𝑤(0), 𝑤(1), . . . , 𝑤(𝑀 − 1)]𝑇 ∈ C𝑀×1 is Gaussian
noise vector distributed according to N(0, (𝜎2/𝑁)I𝑀). b𝑛 is
symbol vector sent by the 𝑛-th user within a frame period for𝑛 = 1, 2, . . . , 𝑘, . . . , 𝐾 and each symbol vector consists of 𝐿
number of pilot symbols and𝑀−𝐿 number of data symbols.
The vector g denotes time-varying channel impulse response

g = [g𝑇 (0) , g𝑇 (1) , . . . , g𝑇 (𝑀 − 1)]𝑇 . (4)

The mobile receiver’s symbol detection performance is sig-
nificantly dependent on the quality of the estimate of channel
g ∈ C𝑀𝑁𝑆×1. However, it is not possible to directly obtain an
estimate of the channel vector g by using received vector y
since it has less number of equations than number of un-
knowns. In other words, this system is overdetermined.
From [7, 8], it can be seen that most of the computational
complexity in the symbol detection results from the channel
estimation process. Since the rapidly time-varying and fre-
quency selective channel is longer than that of considered in
those works, channel estimation process has higher compu-
tational cost. In order to reduce complexity and to directly
estimate the channel vector, a low dimensional subspace
based approximation for the time-varying channel g should
be regarded. Therefore, the channel coefficients 𝑔𝑠(𝑚) can
be represented as a weighted sum of 𝑀 orthonormal basis
functions {u𝑑(𝑚)} in the interval [0,𝑀𝑇𝑠] as follows:
𝑔𝑠 (𝑚) = 𝑀𝑁−1∑

𝑑=0

𝑢𝑑 (𝑚) ℎ (𝑑, 𝑠) , 𝑚 = 0, 1, . . . ,𝑀𝑁 − 1, (5)

where ℎ(𝑑, 𝑠) are the basis expansion coefficients. The band-
width of 𝑔𝑠(𝑚) is 𝐷 ≪ 𝑀𝑁 where it indicates the dominant
number of eigenvalues determining the Doppler spectra.
The dimension 𝐷 of subspace can be lower bounded by𝐷󸀠 = ⌈2𝑓𝐷max

𝑀 + 1⌉, where 𝑓𝐷max
the maximum normalized

Doppler bandwidth is

𝑓𝐷max
= Vmax𝑐0 𝑓𝑐𝑇𝑠. (6)

𝑓𝑐, Vmax, and 𝑐0 are the carrier frequency, the maximum
relative speed between the mobile and the base-station, and
the speed of light, respectively. Then, 𝑔𝑠(𝑚) can be written as
its own approximation:

𝑔𝑠 (𝑚) = 𝐷−1∑
𝑑=0

𝑢𝑑 (𝑚) ℎ (𝑑, 𝑠) , 𝑚 = 0, 1, . . . ,𝑀𝑁 − 1. (7)
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Basis expansion coefficients can be obtained using the or-
thogonality property of the basis functions as follows:

ℎ (𝑑, 𝑠) = 𝑀𝑁−1∑
𝑚=0

𝑢𝑑 (𝑚) 𝑔𝑠 (𝑚) , 𝑑 = 0, 1, . . . , 𝐷 − 1. (8)

In this study, DWHT basis functions are exploited to repre-
sent the time-varying and frequency selective fading channel
in a low dimensional subspace, which are given by

𝑢𝑑 (𝑚) = wal (𝑑,𝑚) = 𝑛∏
𝑗=0

sgn (cos (𝑑𝑗2𝑗𝜋𝑚)) , (9)

where the integer 𝑑 has the binary expansion

𝑑 = 𝑑020 + 𝑑121 + 𝑑222 + ⋅ ⋅ ⋅ + 𝑑𝑛2𝑛, (10)

and the binary coefficients 𝑑𝑗 are each 0 or 1. The Walsh
functions take only the values ∓1 and they change sign only
when 𝑚 is a multiple of a power of 1/2. The index 𝑑 termed
the sequence of a Walsh function, analogous to frequency in
Fourier analysis; therefore DWHT basis functions are also
capable of representing the low-pass equivalent of the chan-
nel. Number of the DWHT basis functions can be limited by
choosing𝐷 smaller than𝑀𝑁; thus mean square of the chan-
nel modeling error can be controlled. Channel and DWHT
expansion coefficients for each channel path are connected
to each other with the following equations:

g𝑠 = Uh𝑠,
h𝑠 = U𝑇g𝑠, (11)

where

g𝑠 = [𝑔 (0, 𝑠) , 𝑔 (1, 𝑠) , . . . , 𝑔 (𝑀𝑁 − 1, 𝑠)]𝑇 ∈ C
𝑀𝑁×1,

h𝑠 = [ℎ (0, 𝑠) , ℎ (1, 𝑠) , . . . , ℎ (𝐷 − 1, 𝑠)]𝑇 ∈ C
𝐷×1,

U = [u (0) , u (1) , . . . , u (𝑀𝑁 − 1)]𝑇 ∈ R
𝑀𝑁×𝐷,

(12)

with the basis functions at𝑚-th sample time

u (𝑚) = [𝑢0 (𝑚) , 𝑢1 (𝑚) , . . . , 𝑢𝐷−1 (𝑚)]𝑇 ∈ R
𝐷×1. (13)

In light of the foregoing, for𝑚-th sample of all channel paths,
the channel and the expansion coefficients can be expressed
in matrix form

g (𝑚) = U (𝑚) h (𝑚) , (14)

where

U (𝑚) = diag (U (𝑚) ,U (𝑚) , . . . ,U (𝑚))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑆

∈ R
𝑁𝑆×𝐷𝑆, (15)

with U(𝑚) = [u(0), u(1), . . . , u(𝑁 − 1)]𝑇 ∈ R𝑁×𝐷 and
h(𝑚) = [h𝑇0 , h𝑇1 , . . . , h𝑇𝑆−1]𝑇 ∈ C𝐷𝑆×1. Here, h𝑠 denotes the
channel coefficients for 𝑠-th path, which can be expressed

as h𝑠 = [ℎ(0, 𝑠), ℎ(1, 𝑠), . . . , ℎ(𝐷 − 1, 𝑠)]𝑇 ∈ C𝐷×1. After few
manipulations, (14) can be arranged as follows:

g = Uh, (16)

whereU represents modified DWHTmatrix expressed as

U = diag (U (0) ,U (1) , . . . ,U (𝑀 − 1))
∈ R
𝑀𝑁𝑆×𝑀𝐷𝑆,

h = [h𝑇 (0) , h𝑇 (1) , . . . , h𝑇 (𝑀 − 1)]𝑇 ∈ C
𝑀𝐷𝑆×1.

(17)

Finally, inserting (14) into (2), the received signal can be
written as

𝑦 (𝑚) = x (𝑚) h (𝑚) + 𝑤 (𝑚) , (18)

where x(𝑚) = ∑𝐾𝑛=1 𝑏𝑛(𝑚)𝜌𝑛𝑘F(𝑚)U(𝑚). Substituting (16)
into (3), a more compact form of (18) can be obtained as

y = Θh + w, (19)

whereΘ = QU ∈ C𝑀×𝑀𝐷𝑆.

3. The Proposed SAGE-Based Receiver

The problem at hand is to detect the user’s data using the sig-
nal model in (19), without having full channel state informa-
tion. The aim of this work is to derive an EM-based iterative
algorithm fulfilling that need. This algorithm will be capable
of cancelling the MAI as well as jointly estimating channel
and detecting the data by decomposing the received signal in
(19) into two summands that are noisy versions of the desired
signal and MAI.

y = Θ𝑘h + w⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
y𝑘

+ΘMAIh⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
yMAI

= y𝑘 + yMAI, (20)

where Θ𝑘 = Q𝑘𝑘U and ΘMAI = ∑𝐾𝑛=1,𝑛 ̸=𝑘Q𝑛𝑘U. Each element
of y𝑘 and yMAI can be written, respectively, as follows:

𝑦𝑘 (𝑚) = 𝑏𝑘 (𝑚)𝜌𝑘𝑘F (𝑚)U (𝑚) h + 𝑤 (𝑚) ,
𝑦MAI (𝑚) = 𝐾∑

𝑛=1,𝑛 ̸=𝑘

𝑏𝑛 (𝑚)𝜌𝑛𝑘F (𝑚)U (𝑚) h. (21)

Now, the SAGE algorithm can be used to detect each users’
data vectors based on the received vector y. Firstly, the
complete and incomplete data can be described. The suitable
choices for complete data and incomplete data are 𝜒 = {y𝑘, h}
and y, respectively. 𝜃 = b is the parameter vector to be
estimated. The likelihood function of the complete data can
be written as

p (𝜒 | 𝜃) = p (y𝑘, h | b) = p (y𝑘 | h, b) p (h | b) . (22)
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Since h and b are independent from each other, the last term
in (22) is a constant. After neglecting the unnecessary terms,
log-likelihood function can be written as follows:

ln p (𝜒 | 𝜃) = ln p (y𝑘 | h, b)
≅ 𝑀−1∑
𝑚=0

[R {𝑏∗𝑘 (𝑚) 𝜅𝐻 (𝑚) 𝑦𝑘 (𝑚)}
− 12 󵄨󵄨󵄨󵄨𝑏𝑘 (𝑚)󵄨󵄨󵄨󵄨2 𝜅𝐻 (𝑚) 𝜅 (𝑚)] ,

(23)

where 𝜅𝑘(𝑚) = 𝜌𝑘𝑘F(𝑚)U(𝑚).
3.1. Expectation Step. The aim of this step is to take the
conditional expectation of log-likelihood function over 𝜒
when we have observed data y and an estimation of b(𝑗).
Assuming we have them, this expectation is given as

L𝑘 (b𝑘 | b(𝑗)) = 𝐸 {ln p (𝜒 | 𝜃) | y, b(𝑗)} . (24)

Inserting (23) into (24), we have

L𝑘 (b𝑘 | b(𝑗))
= 𝑀−1∑
𝑚=0

R {𝑏∗𝑘 (𝑚) 𝐸 {h𝐻𝜅𝐻𝑘 (𝑚) 𝑦𝑘 (𝑚) | y, b(𝑗)}}
− 12 󵄨󵄨󵄨󵄨𝑏𝑘 (𝑚)󵄨󵄨󵄨󵄨2 𝐸 {h𝐻𝜅𝐻𝑘 (𝑚) 𝜅𝑛 (𝑚) h | y, b(𝑞)} .

(25)

The first expected value in (25) can be written by using
conditional expectation rule 𝐸{h𝐻𝜅𝐻𝑘 (𝑚)𝑦𝑘(𝑚) | y, b(𝑗)} =𝐸{h𝐻𝜅𝐻𝑘 (𝑚)𝐸{𝑦𝑘(𝑚) | h, y, b(𝑗)}|y, b(𝑗)} and then we have

𝐸 {𝑦𝑘 (𝑚) | h, y, b(𝑗)}
= 𝑏(𝑗)
𝑘 (𝑚) 𝜅𝑘 (𝑚) h
+ (𝑦 (𝑚) − 𝐾∑

𝑛=1

𝑏(𝑗)𝑛 (𝑚) 𝜅𝑛 (𝑚) h) ,
(26)

where b(𝑞) stands for the estimated value of signal b at 𝑞-th
iteration step. The second expected value in (25) can be ob-
tained as

𝐸 {h𝐻𝜅𝐻𝑘 (𝑚) 𝜅𝑛 (𝑚) h | y, b(𝑗)}
= 𝐸 {h𝐻Γ𝑘𝑛 (𝑚) h | y, b(𝑗)} , (27)

where Γ𝑘𝑛(𝑚) = 𝜅𝐻𝑘 (𝑚)𝜅𝑛(𝑚). Using the results obtained by
(26) and (27), (25) can be rewritten as

L𝑘 (b𝑘 | b(𝑗))
= 𝑀−1∑
𝑚=0

R {𝑏∗𝑘 (𝑚) 𝛽(𝑗)𝑘 (𝑚)}
− 12 󵄨󵄨󵄨󵄨𝑏𝑘 (𝑚)󵄨󵄨󵄨󵄨2 𝐸 {h𝐻Γ𝑘𝑛 (𝑚) h | y, b(𝑗)} ,

(28)

where

𝛽(𝑗)
𝑘 (𝑚) = 𝐸 {h𝐻 | y, b(𝑗)} 𝜅𝐻 (𝑚) 𝑦𝑘 (𝑚)

− 𝐾−1∑
𝑛=0,𝑛 ̸=𝑘

𝑏(𝑗)
𝑘 (𝑚) 𝐸 {h𝐻Γ𝑘𝑛 (𝑚) h | y, b(𝑗)} . (29)

In order to evaluate𝐸[h𝐻 | y, b(𝑗)] and𝐸[h𝐻Γ𝑘𝑛(𝑚)h | y, b(𝑗)]
in (29), p(h | y, b(𝑗)) must be known. It can be obtained by
using (3) as

p (h | y, b(𝑗)) ≅ p (y | h, b(𝑗)) p (h) . (30)

After few manipulations, (30) can be written as

p (h | y, b(𝑗)) ∼ 𝑁(𝜇(𝑗)h ,Σ(𝑗)h ) , (31)

where

𝜇
(𝑗)

h = 𝑁𝜎2Σ(𝑗)h Θ(𝑗)𝐻y, (32)

Σ
(𝑗)

h = [C−1h + 𝑁𝜎2Θ(𝑗)
𝐻
Θ(𝑗)]−1 . (33)

It is important to note that (32) is a MAP estimator of the
channel. The matrix Ch is the covariance matrix of h. We
assume that the vector h is distributed as𝑁(0,Ch), where
Ch = diag (Ch (0) ,Ch (1) , . . . ,Ch (𝑆 − 1)) ∈ C

𝐷𝑆×𝐷𝑆, (34)

with each diagonal matrix Ch(𝑠) = U𝑇Cg(𝑠)U. By using (1),
the Toeplitz covariance matrix Cg(𝑠) can easily be expressed
as

Cg (𝑠)

= 𝜎2𝑔𝑠
[[[[[[
[

𝑐 (0) 𝑐 (1) . . . 𝑐 (𝑀𝑁 − 1)
𝑐 (1) 𝑐 (0) . . . 𝑐 (𝑀𝑁 − 2)
... ... d

...
𝑐 (𝑀𝑁 − 1) 𝑐 (𝑀𝑁 − 2) . . . 𝑐 (0)

]]]]]]
]
, (35)

with 𝑐(𝑘) = 𝐽0(2𝜋𝑓𝑑𝑛𝑇𝑠). 𝑛 represents the subcarrier index. If
the length of the observation frame is large enough, then the
covariance matrix Cg(𝑠) becomes diagonal for each channel
path

Cg (𝑠) = 𝜎2𝑔𝑠 diag (𝛾 (𝑠, 0) , 𝛾 (𝑠, 1) , . . . , 𝛾 (𝑠, 𝐷 − 1)) . (36)

Here, 𝛾(𝑠, 𝑑) = 𝑆ℎ(𝑠, 𝑑/2𝑁𝑀𝑇𝑠) is the scattering function of
the channel for 𝑑 = 0, 1, . . . , 𝐷 − 1, where each of them is the
Fourier transform of 𝑐(𝑘). In [35], it is defined as 𝑆ℎ(𝑠, 𝑓) =
𝜎2𝑔𝑠/𝜋√𝑓2𝐷 − 𝑓2 for |𝑓| < 𝑓𝐷. The first expected value in (29)
can be found as

𝐸 {h𝐻 | y, b(𝑗)} = 𝜇(𝑗)h 𝐻. (37)

The last expectation in (29) can be computed as

𝐸 {h𝐻Γ𝑘𝑛 (𝑚) h | y, b(𝑗)} = trc [K(𝑗) (𝑚)] , (38)
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where

K
(𝑗) (𝑚) = 𝐸 {𝜅𝑛 (𝑚) hh𝐻𝜅𝐻𝑘 | y, b(𝑗)}

= 𝜅𝑛 (𝑚) (Σ(𝑗)h + 𝜇(𝑗)h 𝜇(𝑗)h 𝐻) 𝜅𝐻𝑘 (𝑚) . (39)

Inserting (37) and (38) into (29), 𝛽(𝑗)
𝑘
(𝑚) can be obtained as

𝛽(𝑗)
𝑘 (𝑚) = 𝜇(𝑗)h 𝐻𝜅𝐻𝑘 (𝑚) 𝑦𝑘 (𝑚) − 𝐾−1∑

𝑛=0,𝑛 ̸=𝑘

𝑏(𝑗)
𝑘 (𝑚)

⋅ trc [𝜅𝑛 (𝑚) (Σ(𝑗)h + 𝜇(𝑗)h 𝜇(𝑗)h 𝐻) 𝜅𝐻𝑘 (𝑚)] .
(40)

3.2. Maximization Step. In this step, the proposed SAGE
algorithm is executed to update the data vector b. It can be
updated as follows:

b
(𝑗+1)

𝑘
= arg max

b𝑘

L𝑘 (b𝑘 | b(𝑗)) . (41)

Inserting L𝑘(b𝑘 | b(𝑗)) in (24) into (41), we obtain the follow-
ing:

b
(𝑗+1)

𝑘
= arg max

b𝑘

𝑀−1∑
𝑚=0

R {𝑏∗𝑘 (𝑚) 𝛽(𝑗)𝑘 (𝑚)}
− 12 󵄨󵄨󵄨󵄨𝑏𝑘 (𝑚)󵄨󵄨󵄨󵄨2 trc [K(𝑗) (𝑚)] .

(42)

If data is not encoded, (42) can be obtained as

𝑏(𝑗+1)
𝑘 (𝑚) = 𝛽(𝑗)

𝑘 (𝑚)
trc [𝜅𝑛 (𝑚) (Σ(𝑗)h + 𝜇(𝑗)h 𝜇(𝑗)h 𝐻) 𝜅𝐻𝑘 (𝑚)] . (43)

It should be noted that (43) is a continuous-valued expres-
sion. However, the user data 𝑏(𝑗+1)

𝑘
(𝑚) has a discrete value

corresponding to a signal constellation point; hence, at each
iteration step, the expression in (43) must be quantized to a
signal constellation point closest to itself.

Considering that (32) is a MAP channel estimator, (43)
can be interpreted as joint channel estimator and data
detector. Also, the quantities 𝛽(𝑗)

𝑘
(𝑚) in (40) for each user can

be thought as the outputs of successive interference canceller
at the 𝑗-th iteration step. As a result, the proposed iterative
algorithm can be called a suboptimal receiver. The flowchart
of the algorithm is given as Figure 1.

3.3. Initialization. In order to initialize the proposed SAGE
algorithm, the initial values of the channel vector and the data
vector must be known. The performance of the algorithm is
directly related to the proper selection of these values. The
initial value of the channel vector can be obtained by focusing
only the training sequence.The resulting signal model, called
under-sampled signal model, is

y𝑟 = Θ𝑟h𝑟 + w𝑟. (44)

(⋅)𝑟 indicates that it is a reduced version of (⋅). By using well-
known classical channel estimation method, undersampled
channel parameters can be obtained as

ĥ(0)𝑟 = (Θ𝐻𝑟 Θ𝑟 + 𝜎2𝑁C−1h )−1Θ𝐻𝑟 y𝑟. (45)

Hence, full channel knowledge can easily be obtained using
an interpolation technique.

To detect the initial data symbols, the same classic estima-
tion method MMSE can be exploited. A new signal model
is required to reduce the complexity of MMSE based initial
data detection method. Once the pilot symbols have been
removed, the received signal can be written as

ỹ = G(0)b(0)𝑘 + ñ, (46)

where ỹ and b
(0)
𝑘

are dimensionally reduced versions of y
and b𝑛, whereas each entry of noise vector ñ is ñ(𝑚) =∑𝑛=1,𝑛 ̸=𝑘 𝑏𝑛(𝑚)𝜌𝑛𝑘F(𝑚)g(𝑚), ∀𝑚, andG(0) ∈ C𝑀×𝑀 is a diag-
onal matrix, each entry of which is 𝜌𝑘𝑘F(𝑚)g(𝑚). From the
observation equation (46), initial estimate of data vector for
user 𝑘 can be found as

b̂
(0)
𝑘 = G(0)

𝐻(G(0)G(0)𝐻 + 𝜎2𝑁 I𝑀)
−1

ỹ. (47)

It should be noted that finding an initial estimate of data vec-
tor for user 𝑘 does not need matrix inversion since G(0) is a
diagonal matrix.

3.4. Complexity Analysis. Computational complexity analysis
of the proposed algorithm will not be exhibited in detail,
whereas it is presented roughly. When the proposed algo-
rithm is examined carefully, it can be easily seen that the
complex multiplication operations are dominant over whole
computational complexity. Thus, finding the multiplication
operations while computing the expressions in (37) and
(38) will lead to a rough result for the computational
complexity of the proposed algorithm. The trace operation
in (37) requires 4𝑁𝐷𝑆 complex multiplications and 3𝑁𝐷𝑆
complex additions. In order to calculate (38), 5𝑁𝐷𝑆 complex
multiplications and 4𝑁𝐷𝑆 complex addition operations are
required. As a result, a total of 9𝑁𝐷𝑆 complexmultiplications
and 7𝑁𝐷𝑆 complex additions must be performed in each
iteration step of the proposed algorithm. By defining number
of iterations that the algorithm needs to converge as 𝐽, total
number of complex operations is approximately𝑂(16𝐽𝑁𝐷𝑆).

Based on this result and keeping low computational
requirement of DWHT algorithm in mind, it can be con-
cluded that the proposed algorithm has low computational
cost if compared to the existing works in the literature such
as [13, 25, 26].The computational load of the proposed SAGE
algorithm is given here roughly; it is possible to find a bitmore
detailed analysis in [13].

3.5. PAPR Analysis. Just as in OFDM, MC-CDMA systems
inherently suffer from the PAPR problem. Since PAPR causes
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Figure 1: The flowchart of the proposed algorithm.

nonlinear distortions at the output of the high power ampli-
fier, the BER or SER performance of the system is reduced. To
overcome this problem, linear filters with large dynamic
range are required. Such filters increase the system cost con-
siderably and their power efficiency is also very low. The
underlying power efficiency problemprevents the use of these
filters, since they make the coverage area of a wireless or
a mobile communication system inadequate. For all these
reasons, many different techniques have been proposed to
reduce PAPR, such as clipping and filtering, companding,
precoding transform, the partial transmit sequence, coding,
and the selective mapping.

In this study, the DWHTmethod, which is used as a base
expansion model to represent time-varying channels with
fewer coefficients, is also a transformation with compression
capability. The use of DWHT in [33, 34] to reduce the
PAPR effect encouraged us to examine whether the proposed
scheme can reduce PAPR, like a companding method.

The PAPR is defined as the variation of the envelope of a
multicarrier signal and is expressed as follows:

PAPR = 𝑃𝑝𝑃av = max 󵄨󵄨󵄨󵄨𝑥V󵄨󵄨󵄨󵄨2(1/𝑁)∑𝑁−1V=0
󵄨󵄨󵄨󵄨𝑥V󵄨󵄨󵄨󵄨2 , (48)

where 𝑥V for V = 0, 1, . . . , 𝑁−1 represents the time samples of
an MC-CDMA symbol. 𝑃𝑝 is peak power of the MC-CDMA
signal and 𝑃av is its average power. It is possible to decrease
the PAPR value by decreasing the numerator of (48) or by
increasing its denominator or both.

Aftermulticarriermodulation, the downlink signal trans-
mitted through the high power amplifier can be written as

𝑠 (𝑡) = R( 𝐾∑
𝑘=1

𝑁−1∑
𝑛=0

𝑏𝑘 (𝑡) 𝑐(𝑘)𝑛 𝑒𝑗2𝜋𝑛(𝑡/𝑇𝑠)) , (49)

where 𝑏𝑘(𝑡) is the 𝑘-th user data and 𝑐(𝑘)𝑛 is 𝑛-th chip of 𝑘-
th user. If (48) can be arranged for (49), we can obtain the
following upper bound for PAPR using the Cauchy-Schwartz
inequality as

PAPR ≤ 2max {∑𝐾𝑘=1 󵄨󵄨󵄨󵄨󵄨∑𝑁−1𝑛=0 𝑐(𝑘)𝑛 𝑒𝑗2𝜋𝑛(𝑡/𝑇𝑠)󵄨󵄨󵄨󵄨󵄨2}𝑁 . (50)

However, the statistical definition of PAPR is more widely
used in the literature as the theoretical maximum value of
the PAPR in (50) has a low probability of occurrence due to
discrepancy between the values of analog and digital PAPRs.
The cumulative distribution function (CDF) approach is a
common statistical method used for measuring the efficiency
of PAPR. However, complementary cumulative distribution
function (CCDF) is preferred instead of CDF since CCDF
is more suitable for evaluating PAPR. So, we decided to
measure the PAPR performance of considered MC-CDMA
systemusing this statisticalmethod. According to [36], power
distribution of OFDM signal becomes a central chi-square
distribution with 2 degrees of freedom and zero mean.
Assuming the variance of one complex sinusoid as 𝛼, its
cumulative distribution can be written as

𝐹 (𝑧) = 12𝛼2 ∫
𝑧

0
exp (− 𝑢2𝛼2 )𝑑𝑢. (51)

Assuming the samples 𝑧 to be mutually uncorrelated, we can
then write the CDF of the PAPR of a data block with Nyquist
rate sampling as follows:

Pr (PAPR ≤ 𝑧) = (𝐹 (𝑧))𝑁 . (52)

Since we want to evaluate the PAPR, we need complement
of (53) in probabilistic manner. According to [36], it is given
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for QPSK signalling and for large number of subcarriers (𝑃 =𝑁 > 64) as
Pr (PAPR > 𝑧) = 1 − Pr (PAPR ≤ 𝑧) = 1 − 𝐹 (𝑧)𝑁

= 1 − (1 − 𝑒−𝑧)𝑁 . (53)

4. Computer Simulations

In this section, Monte-Carlo simulations are carried out to
demonstrate the performance of the proposed structure. In
the simulations, a downlink MC-CDMA system operating at
a frequency of 2.6GHz is considered. The communication
channel is modeled as a channel with an exponentially
decreasing power delay profile and a length 𝑆 = 4. The power
components for each path of the channel are modeled as 0,−5, −10, and −15 dB and the path delays as 0, 𝑇𝑠, 2𝑇𝑠, and3𝑇𝑠, respectively. We consider a resource block size of𝑀 = 6
with two pilot symbols, that is, one as preamble and other one
as postamble. It is chosen to be particularly short in order to
be able to track the channel in the presence of high mobility.
In simulations where symbol error rates are examined, the
speed of the mobile unit is set to 295 km/h (𝑓𝐷𝑇 = 0.05)
unless otherwise stated. It is assumed that 𝐾 = 8 mobile
users are active in the system. For convenience, the number
of subcarriers and the length of the Walsh type spreading
code are assumed to be equal and each of them is chosen as𝑃 = 𝑁 = 256.

Figure 2 shows that the variation of the channel’s mean
squared error for different basis expansionmethods when the
channel is represented by a different number of coefficients.
As can be seen from this figure, the best performance
among these curves belongs to discrete Karhunen-Loeve
transform (DKLT) BEM that is the optimal one. However,
it is well known that this method is sensitive to variations
in the channel and therefore needs exact channel statistics.
Moreover, the computational cost of this method is high.The
performance of the polynomial BEM (Poly) is the next best
one, but it is affected from the Doppler spread. Moreover, the
order of the polynomials seriously affects the performance of
this method. The performances of the rest two methods are
almost the same. Although compression capacity of DCT is
quite high (DCT is perfectly bandlimited and low-pass), the
DCT-BEMhas the same structure as the complex exponential
(CE) BEM, so it has similar problems. For this reason, it is
not suitable for the representation of time-varying channels
like CE-BEM. Considering performance close to DCT in
Figure 2, the proposed method, DWHT, can be considered
as a preferred BEM method in mobile units because of its
advantages in hardware implementation due to the small
amount of computational burden. In addition, Figure 3 shows
that, despite the increasing values of the Doppler spread, the
proposed DWHT method does not exhibit any sensitivity
to it. With increasing mobility, DWHT exhibits reasonably
performance reduction such as the methods DCT andDKLT.

The SER performances of the proposed estimator are
shown in Figure 4 when the speed of the mobile unit is295 km/h and 590 km/h. In this figure, the proposed method
SAGE DWHT is compared with methods of MMSE which
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Figure 2: Average MSE of channel estimation versus number of
coefficients.
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Figure 3: Average MSE of channel estimation for several normal-
ized Doppler spread.

estimates data and channel separately, the proposed algo-
rithm using DCT as a BEM (SAGE DCT), and the pro-
posed algorithm having perfect channel knowledge (SAGE
for perfect CSI). It is observed that the proposed method
provides a better performance than MMSE and is very close
to the performance of the SAGE DCT. Given the competi-
tive performance exhibited, it is obvious that the proposed
method will be advantageous for mobile units since DWHT
and inverse DWHT transformations can only be performed
by simply addition and subtraction operations. Also, note
that, as the velocity increases, the rapidly varying channel not
only destroys the orthogonality but also provides the receiver
with time-diversity. In case of perfect CSI (SAGE for perfect
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Figure 4: Performance comparison of the proposed algorithm with
different methods in terms of SER for 𝑃 = 256, 𝑆 = 4, 𝑓𝐷𝑇 =0.05 (295 km/h),𝑓𝐷𝑇 = 0.0999 (590 km/h), andQPSKmodulation.

CSI), the proposed algorithm performs better although the
speed is increased. This can be seen clearly in Figure 4 from
SAGE for perfect CSI (V = 295 km/h) curve and SAGE for
perfect CSI (V = 590 km/h) curve. However, if the channel is
not known perfectly, this gain from the diversity disappears
due to channel estimation error.

In Figure 5, the SER performance curves of the proposed
method are shown for different modulation levels, and each
of which is compared to a corresponding lower bound when
the receiver has perfect CSI. From the curves, it is concluded
that there is no significant loss in SER performance of the
proposed method at low and medium values of SNR even if
there is no channel information at the receiver side.

Figure 6 shows the convergence rate of our iterative algo-
rithm for QPSK modulation and for several values of 𝑆𝑁𝑅.
Depending on the initial values and 𝑆𝑁𝑅, the convergence
of our proposed algorithm takes 3 or 4 iterations. The fact
that the mobile unit has different speeds does not have a
significant effect on the convergence rate of the algorithm.
Consequently, a separate figure showing the convergence rate
of the algorithm for different speeds is not presented.

Finally, we examined whether the proposed basis expan-
sion method is effective on a PAPR like other companding
techniques. Figure 7 depicts the CCDF performances of orig-
inalMC-CDMA system andMC-CDMAwithDWHT.While
using QPSK signalling and choosing 𝑃 = 256 for the pro-
posed synchronous MC-CDMA system, we have observed
that the use of DWHT reduces the PAPR significantly with
about 1.5 dB for CCDF(PAPR) ≤ 10−3.
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Figure 5: SER performance of the proposed algorithm for various
modulation schemes.
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Figure 6: Convergence of SER with respect to the number of itera-
tions.

5. Conclusions

In this work, we propose an iterative joint channel estima-
tion, equalization, and data detection method for downlink
communication ofMC-CDMA systems communicating with
frequency selective and time-varying channels. Closed form
expressions for the data detection of the proposed SAGE-
based algorithmhave been derived. Since themain goal of the



10 Wireless Communications and Mobile Computing

Original MC-CDMA
MC-CDMA with DWHT

10−4

10−3

10−2

10−1

100

CC
D

F

1 2 3 4 5 6 7 80 9 10
PAPR (dB)

Figure 7: CCDFs with/without DWHT versus several dB values of
PAPR for QPSK signalling.

work is to provide a method with less computational com-
plexity, the discrete Walsh-Hadamard base functions have
been used to represent rapidly time-varying channels in
downlink communications. DWHT has been chosen in
particular because it has a low computational cost and it can
be easily implemented in hardware with simple addition and
subtraction operations. It has been observed that, depending
on the normalized Doppler frequency, it is sufficient to rep-
resent the channel satisfactorily with a few expansion coeffi-
cients. Moreover, no statistical information is needed about
the input data. Also, it has a simple implementation, initial-
ization process, and low computational burden if compared
to VBLAST, WIMAX, and LTE. This is because VBLAST
requires computing inverse of matrices whose dimension
equals the number of subcarriers used in OFDM, and the
number of subcarriers in the system based on WIMAX and
LTE ismuch greater than one in the normalmulticarrier case.
Since the DWHT method used in the proposed receiver is a
compression capablemethod, it provides a reduction in PAPR
by acting as a companding method.

From the simulation results, it can be seen that both
SER and channel estimation performances of the proposed
method is not excellent but satisfactory. Thanks to its low
computational complexity, it can easily be implemented on
a mobile unit with an acceptable performance. Moreover, if
a coding scheme is adopted to the proposed method, the
performance of it can considerably increase. Finally, from
Figure 7, the proposedmethod achieves the same SER perfor-
mance with an average PAPR of approximately 1.5 dB lower.
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